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Abstract. The efficient transmission of TCP traffic over OBS networks is a 

challenging problem, due to the high sensitivity of TCP congestion control 

mechanism to losses. In this paper, a traffic profiling scheme is proposed for 

gathering TCP flow statistics, which are used to estimate steady-state 

performance of TCP traffic over OBS networks. The burst assembly unit, in 

parallel to the assembly process, can inspect TCP traffic, keeping traffic 

statistics that can be used for throughput estimations. In this paper, we detail the 

traffic profiling and estimation mechanism and also provide analytical and 

simulation results to assess its performance. 

Index Terms: TCP profiling, traffic estimation, Optical Burst Switching, Burst 

Assembly 

1   Introduction 

TCP transmission over OBS [1], has been extensively studied in the related literature. 

Various burst assembly and burst scheduling algorithms have been proposed, 0 , to 

enhance the efficient transmission of TCP over OBS networks but still remains an 

open problem, since the (relatively) high burst loss ratio experienced in OBS 

networks is incompatible with TCP congestion control mechanism.  It has been 

observed that burst losses have a significant impact on the TCP end-to-end 

performance, as shown in [3], [4]. In particular, TCP transmission over OBS networks 

suffers from the high number of segments that are lost, upon a single burst drop. This 

typically results in many sources timing out and which will subsequently enter a slow 

start phase. This may also result in synchronizing TCP transmissions with an 

imminent effect on link utilization, 0. Further, the introduction of an unpredictable 

delay, challenges the window mechanism used by TCP protocol for congestion 

control. In this work, we focus on TCP flow profiling in OBS networks which can 

provide insights to the network operators, regarding user-perceived performance, and 

serve as a basis for capacity planning. 

TCP flow profiling is extremely useful, as TCP traffic represents a dominant and at 

the same time very predictable part of internet workload. According to recent internet 

measurement studies 0, TCP protocol is responsible for over 95% of total bytes 

transmitted. Additionally, it has been established that internet workload is heavily-



tailed and a large part of network capacity is dedicated to long-lived file transfers. 

Most of this traffic is mainly P2P files exchanges, and web file transfers, as well as 

online video connections over HTTP (i.e. Youtube). Moreover, as shown in 0, the 

TCP throughput of large transfer TCP flows over OBS, collapses to a single fixed 

operating point (called equilibrium) enabling the accurate prediction of aggregate 

TCP throughput. However, aggregate throughput statistics have a limited, since they 

only reflect the network state, when traffic measurements are taken. Network 

operators are mainly interested in flow-level statistics, exported for example by 

enterprise routers through Cisco Netflow protocol 0. Flow-level statistics can provide 

insights for user-perceived performance, and they are useful for network management 

and capacity planning. Estimating flow-level statistics is a resource-intensive process, 

as it involves specialized monitoring equipment that captures packets from monitored 

flows and extracts statistics. Typically, a small percentage of the original network 

flows is monitored, denoted as “flow sample”. There is a lot of research done on 

sampling TCP flows 0, and optimally estimating flow statistics from flow samples 0, 

a process that is called “inversion”. 

In this paper, we propose a TCP traffic profiler for OBS networks, which performs 

on-line estimation of active TCP flow statistics, as well as network parameters like 

burst loss ratio and round trip time. The rest of the paper is organized as follows. 

Section II discusses predictability issues of long-lived TCP traffic, while Section III 

presents the TCP traffic estimator that can be used for predicting burst sizes. Finally, 

Section IV presents performance evaluation results, obtained through simulations 

using ns-2. 

2   TCP Traffic Profiling in OBS networks 

In this section, the main issues and challenges are discussed, for collecting TCP traffic 

statistics in OBS networks. In principle, collecting detailed traffic information for 

active TCP connections provides an intimate traffic knowledge, which can serve as a 

basis for traffic engineering. Flow-level metrics like flow size distribution, number of 

active flows, and average throughput are useful for network management and capacity 

planning. 

2.1   Collecting Traffic Statistics in OBS networks 

For gathering flow-level traffic statistics, a monitoring system is required, that stores 

and constantly updates a record of sampled flows. Cisco Netflow 0 is an example of 

such system, deployed in commercial enterprise-class routers. For gathering network-

wide traffic statistics, a node with access to all packets transmitted is needed. In OBS 

networks, this node can be the burst assembler. Burst assembler is well suited for 

gathering traffic statistics, having access to all packets received. Packet headers have 

to be examined, before being assigned to the appropriate burst assembly queue, 

assuming that a separate queue for each source-destination pair is kept. Thus, keeping 

traffic statistics does not bear a significant overhead for edge nodes, provided that 

very short-lived TCP connections are filtered-out. 



It has to be noted that in real-world networks, long-lived TCP flows constitute both 

the dominant (in terms of bytes transmitted) and the most predictable part of network 

traffic. Internet workloads are regarded to be heavy-tailed 0, i.e. their flow length 

distribution Z follows a probability distribution such that the right tail has power-law 

decay, or: 

��� > ��~ �	
, � → ∞ . 
(1) 

Long-lived flows, also known as “elephant flows”, are responsible for the 80% of 

the overall bytes transmitted. This has been verified by recent internet measurement 

studies in 0, where it has been found that the majority of data transmissions over the 

internet is due to large file transfers, online video downloads over HTTP (i.e. 

YouTube) and P2P file exchanges. On the other hand, the average size of data 

transmitted from interactive Web request is fairly small, in the order of 26–30 kB, 

with a small contribution to overall bandwidth and a high degree of burstiness. To this 

end, it becomes clear that it is preferable to filter-out short-lived flows and gather 

statistics solely for long-lived TCP flows. This requires the profiler to effectively 

distinguish short-lived from long-lived flows, and can be carried out by defining a 

flow lifetime threshold θ, that is intuitive and easy to implement.  

In what follows, we focus on the TCP traffic predictability issues, and argue that 

formula-based TCP throughput estimation for long-lived TCP traffic is a viable 

solution. 

2.2   Predictability of Long-Lived TCP flows in OBS networks 

The feedback control mechanism of TCP protocol is a well known mechanism for 

introducing a degree of predictability in TCP traffic. TCP flows are prevented from 

transmitting at the full link capacity, to avoid saturating the network, and they can 

only transmit as many packets as their congestion window (cwnd) allows. Newly 

arrived flows have to “probe” for network capacity, by starting their transmission with 

a cwnd of 1, and which is doubled in every lossless round. TCP flows ultimately reach 

steady state (or congestion avoidance state) after the first segment loss is detected, 

which corresponds to network equilibrium. In such a case, all flows fairly share the 

available bandwidth.  

TCP congestion avoidance algorithm operates in a purely deterministic way, while 

TCP window in an idealized scenario follows a periodic “saw tooth” profile. This 

traffic pattern is common to all TCP implementations that only differ in the fast 

recovery phase, with a small contribution in the overall throughput.  

It has been established in 0 that traffic dynamics of large transfer TCP flows can be 

accurately estimated by making use of appropriate performance modeling formulas. 

This is due to the fact that long-lived flows’ congestion window ultimately converges 

to a steady state, reaching equilibrium. In [7] the authors show that they can 

accurately predict the network fixed point (i.e. the steady state input rates of long-

lived TCP flows) over an OBS link. Formula based throughput estimation requires 

up-to-date measurements of burst loss ratio p, flow round trip time (RTT) and 

segment per burst distribution. Studies on TCP predictability have concluded that 

accuracy is negatively impacted by unpredictable queuing delays in congested paths. 



This results in fluctuating RTTs that affects the accuracy of the TCP performance 

estimation formulas. However, due to the bufferless nature of OBS networks, large 

transfer TCP flows over OBS are expected to be very predictable. The accuracy of 

TCP bandwidth estimation depends on the accuracy of the estimated network 

parameters, like burst loss ratio, as well as TCP flow statistics like flow access rates 

and access delays. 

3   TCP Flow Profiler Architecture 

In this section, the profiler architecture is presented, as well as how flow statistics are 

formed from a subset of active flows, called the flow sample. Flow sampling is 

employed for limiting the consumption of resources required to extract flow statistics 

from traffic measurements, which would be prohibitive if all packets and flows were 

retained. Thus, it follows that the flow statistics from unsampled flows must be also 

estimated, based on the sampled flow statistics, a procedure commonly referred as 

inversion. In this work, unbiased estimation of flow statistics is achieved by selecting 

the flow sample independently of measured statistics (unbiased selection). As an 

example, for performing an unbiased estimation of flow length distribution, sampled 

flows are selected independently of the flow length. Thus, the statistics of the sampled 

flows are expected to converge to the ones of the unsampled flows, as the number of 

sampled flows approaches the overall number of active flows. 

In what follows, a TCP flow profiler is designed, which is integrated with the burst 

assembly process. Its goal is to provide running online measurements of flow and 

network performance metrics. These metrics are constantly updated, so that they don't 

become outdated. Being in the middle of the flow end-to-end path, the flow profiler 

has access to all segments transmitted from TCP sources assigned to the burstifier, 

and it is able to inspect TCP segment headers without incurring excessive overheads. 

It does not have information on TCP segments lost before the burst assembly process, 

or on internal TCP sender state (like congestion window). The profiling module 

proposed here performs an estimation of the following metrics: 

• Burst loss ratio 

• Number of active long-lived TCP flows 

• TCP performance variables (RTT, access rate) 

• Steady-state TCP throughput 

 

Passive estimation techniques are used in our profiler for compiling flow statistics, 

as opposed to active estimation techniques, where probing sessions are initiated by the 

profiler. Passive techniques allow monitoring of a large number of flows in a diverse 

set of network paths without interfering with traffic flows. Most of the metrics can’t 

be estimated in a stateless manner. In order to compile flow statistics, a table of flow 

records, indexed by flowID must be maintained. A representative, unbiased flow 

sample has to be stored in this flow table, so that traffic statistics of the sampled flows 

match the traffic statistics of the unsampled flows. Usually, the traffic sample is a 

small percentage of the overall flow population (typically less that 1%) as the overall 

number of flows assigned to a burstifier is in the order of millions. 



In the proposed scheme, TCP profiler divides active flows in sampled and un-

sampled ones according to the flow sample rate N, which defines that only 1 in N 

flows is sampled on average. For every packet that is received by the burstifier, the 

profiler determines if the packet will be retained and whether a flow record is active 

for it’s flowID. If a flow record is active, the flow statistics are updated on the 

reception of the packet. If not, it instantiates a new record with the packet’s flowID. 

The primary constraints of flow-level profilers are the memory bandwidth and 

memory size limitations, since millions of flows can be assigned to a single 

monitoring device. The memory bandwidth of DRAMs utilized in typical Netflow 

capable routers 0 is not sufficient to lookup the flowID of all incoming packets, thus a 

small sampling ratio is used. To cope with this problem, in 0 an alternative profiling 

architecture was proposed, based on fast SRAMs. However, SRAMs are expensive 

and come in very small sizes as compared to DRAMs – thus being capable of storing 

a smaller flow sample. 

In this work, we employ hash-based sampling technique, which avoids memory 

lookup for packets belonging to unsampled flows, resulting in large memory 

bandwidth savings. According to this technique, the profiler calculates a hash value 

for the flowID for every received packet, i.e. h = f(flowID), which is normalized in 

the interval h є [0,1]. Since hash algorithms are designed with an objective to evenly 

distribute a stream of (possibly correlated) values, the hash value is uniformly 

distributed and thus can serve as an unbiased criterion of flow selection. Thus, if ℎ ≤ 1/�, with N the flow sample rate, the flow is sampled or else it is not.  

The abovementioned selection technique is unbiased and efficient, since, one can 

track as many flows as the DRAM memory bandwidth allows, and accordingly set the 

value of the sample rate N. Additionally, since in OBS networks the burst assembler 

has to inspect packet headers in order to assign them to the appropriate queue, this 

technique only adds-up a few clock cycles overhead per received packet. Similar 

works that calculate hashes of received TCP packet flowIDs were able to track 

millions of flows at line speeds 0.  

The efficiency of the abovementioned technique can be further enhanced by 

filtering out slow flows. One-packet long TCP flows have a disproportionally large 

frequency, owing to HTTP protocol (clients send http requests to web servers 

encapsulated in a single packet). To avoid wasting resources for storing one-packet 

flows, in the proposed scheme, new records for slow flows (i.e. flows with a single 

data packet in a burst) are not created. 

3.1   Burst loss ratio estimation 

The estimation of the burst loss ratio is carried out using the signaling messages 

received by the edge router’s control unit.  For every dropped burst the core node 

returns a message (BHP_DROP) to the edge router to report the loss. This is 

communicated to the profiler, which stores a bit vector of bursts successfully 

transmitted (denoted with ‘0’) and bursts lost (denoted with ‘1’). Bit values Xk are 

assumed independent Bernoulli random variables that take value ‘1’ with a 

probability equal to the burst loss ratio. The burst loss ratio is thus estimated as the 



sum of ‘1’ values in the vector divided by the vector length W. Thus, the burst loss 

ratio is defined as: 

� = ∑ �����  . (2) 

 

 

For the online estimation of burst loss ratio, we use the well known sliding window 

averaging technique that discards aging values, older than the vector length. 

According to this technique, proposed in 0, for packet loss ratio estimation, given that 

Xk is the k
th

 bit value of the vector corresponding to the k
th

 burst transmission and W is 

the vector length, a running estimation of burst loss ratio is obtained by:  

����� = 1� � ��
�

� �	���
 . (3) 

 

The vector length W is calculated based on the desired accuracy, using the analytic 

model proposed in 0. The estimated burst loss ratio error for a vector length W, a real 

burst loss ratio p and a confidence interval of 95% is derived as: 

! = 1.96$�(1 − �)/��  . (4) 

 

Thus, for a burst loss ratio of 1% and an error rate of 0.002, this corresponds to a 

bit vector length of 4.000 values, which is the one used in our experiments. 

 

3.2   Access rate and RTT estimation  

Flow access rate depends on the bottleneck link across the path from the sender to 

the edge router, for which the burstifier has no knowledge. It can be estimated by 

finding the maximum number of segments that a flow injects in a burst. Thus, it 

requires estimating segment-per-burst ratio for the sampled flows, throughout their 

duration while retaining its maximum value. Then, the flow access rate for flow-i, 

denoted as ri, can be estimated as: 

(� =  )*�+,�-�. ∗ ),,0123  . (5) 

 

Where SPB is the segment-per-burst ratio, MSS is the maximum segment size and 

TMAX is the burst assembly time. With respect the round-trip time of the sampled 

flows, it can be easily estimated at the flow setup phase during the three-way 

handshake period, a procedure detailed in 0. The profiler must keep track of the time 

each control packet was received (SYN, SYN-ACK and ACK), which allows the 



direct computation of the Profiler-to-Server and Client-to-Profiler round trip times. 

The flow RTT is estimated as the sum of these two values. 

3.3   Long Lived Flows threshold 

For distinguishing flows between long and short lived, we define a threshold in the 

flow length. If the observed flow length (i.e. packets or bytes transmitted) is smaller 

than a threshold denoted with θ, then it is classified as short lived – otherwise it is 

classified as long-lived. It has been mentioned previously that steady-state throughput 

of large file transfers constitute a large part of internet traffic, while their flow 

dynamics are very predictable.  Thus, we may set threshold θ as the expected flow 

length at the time that the first packet loss occurs. After this loss, flow will enter the 

congestion avoidance phase. Selecting the expected flow length as the threshold is 

much more efficient than passively estimating TCP state of individual active flows, a 

process which is TCP implementation dependent and very computationally intensive. 

In contrast, the proposed technique is more straightforward, easy to implement, and it 

is implementation-agnostic, as it assumes an idealized congestion window evolution. 

It assumes that TCP flows begin their transmission with a congestion window of one 

that doubles per lossless round, while after the first segment loss, the flows enter the 

congestion avoidance state, in which they stay until they conclude their transmission. 

Fast retransmit/fast recovery and Time-Out phases are not taken into account, as they 

have a minimal effect on TCP performance for small burst loss ratios. 

The expected file size transmitted until the first loss, which serves as the long-lived 

flow threshold, is estimated analytically. In an OBS network packet losses are 

correlated, due to the assembly of multiple packets in a single burst. Thus, packet loss 

ratio is not identical to the burst loss ratio. One burst loss carrying at least one packet 

of a flow in the slow-start phase is enough to agitate the flow to its congestion 

avoidance (steady-state) phase, regardless of the number of assembled packets carried 

by the burst. Assuming that burst losses in OBS networks are independent events, the 

probability of transmitting k bursts before a loss occurs and assuming a burst loss 

ratio p is: 

 ��- = 4� = (1 − �)�� . 
(6) 

The number of segments that are assembled in a single burst denoted as SPB 

(segments-per-burst ratio) depends on the flow access rate, the burst assembly period 

and also by the flow congestion window. Thus, the number of segments transmitted 

before the first loss occurs can be approximated as: 

5��� = , ∗ 5�-� =  , ∗ �(1 − �)��6
7

= ,�-�  . (7) 

 

The value ,�-/� is equal to the TCP Triple Duplicate Period (TDP) over OBS, 

derived from 0. Alternatively, for long-lived flow-i that had no loss before saturating 

their local capacity, the bandwidth-delay product ri*RTTi can be used as threshold, 

where both values are estimated by the profiler. For a typical burst loss ratio of 1% 



and a value of SPB=4, the flow threshold corresponds to 400 segments. This value is 

considerably higher than the average HTTP request size, and thus can successfully 

serve as a definite criterion of differentiation.  

Next, we argue that in heavy-tailed workloads like the ones in the internet, the 

majority of bytes are transmitted after the threshold has been reached, i.e. in the 

steady-state phase. In 0, web traffic is classified in web requests, shown to follow a 

heavy-tailed distribution with parameter α = 1.21 and web file transfers shown to 

follow a heavy-tailed distribution with heavier tail weights, and α = 1.1. Due to the 

heavy-tailedness of the workload, long-lived flows are very likely to continue being 

active a long time after they have been identified as such, i.e. long after they have 

exceeded the long-lived flow threshold. Heavy-tailed flow length distribution Z has 

the following fundamental property: 

lim;→6 Pr�� > � + 4 | � > �� = 1 . 
(8) 

 

This denotes that for flows with a long duration (z→∞) the probability of 

transmitting k extra bytes before concluding their transmission is large, i.e. Pr�� >� + 4� → 1  as � → ∞. In other words, the longer the flow duration is, the higher it’s 

expected residual life is. As an example, assuming that file sizes follow Pareto 

distribution, with an index parameter @ = 1.1, then assuming that the flow reached 

the threshold θ, its Mean Residual Life (i.e. the expected number of bytes the flow is 

expected to transmit before closing) is 0: 

)AB(C) = 11 − D C = 10 ∗ C . (9) 

 

Thus, flows characterized as long-lived, transmit more than 90% of their file size 

after having reached threshold C, in the steady-state phase. 

3.4   Long-Lived Flow Counting 

In the proposed architecture, the number of active long-lived flows that have been 

assigned to the burstifier, along with their TCP state has to be known. A sampled flow 

is regarded active as long as it’s flowID is stored in the flow table. The flowID is 

inserted after the first packet from the flow is received at the burstifier, and it is 

removed after a time threshold of inactivity (few RTTs). Thus, the number of active 

sampled flows is the number of distinct flowIDs in the table. In addition, the number 

of active sampled long-lived flows, is the number of distinct flowIDs exceeding 

threshold C, as defined in previous section. This is a valid assumption, since the 

proposed TCP profiler architecture guarantees unbiased selection of the flow sample. 

Sampled flows have a fixed probability of being selected, irrespective of their 

duration or their ON period. This can be formulated as (following the same rationale 

as in 0): Assuming that the number of active long-lived flows at a given time on the 

network is �FGG, each one of them (due to unbiased selection) is modeled with an 

independent Bernoulli random variable wi with a selection probability of 1/N. The 



expected number of selected flows (assuming a selected flow contributes ‘1’ to the 

sum) is: 

�FH GG  =  � ∗ � IJKL

� �
 . (10) 

 

where �FGG is the number of steady-state flows and N is the inverse of the sample 

rate. Thus, the true number of active long-lived flows converges to the number of 

sampled long-lived flows multiplied by N, i.e. the above equation performs an 

unbiased estimation of the number of long-lived flows. Regarding the variance of the 

estimator, it is bounded by the number of active long-lived flows on the system 

(�FGG) as well as the profiler sampling rate 1/N. Specifically, the standard error of the 

estimator is: 

$M@((�FH GG)�FGG = N ��FGG . (11) 

 

It can be seen that the estimator variance is small and can be made arbitrarily small 

when a high sample rate is used.  

3.5   Estimating aggregated steady-state throughput 

The goal of the steady-state throughput estimation process is to calculate the 

aggregated steady-state throughput of file transfers, based on TCP traffic statistics at 

the flow level. TCP throughput calculations are based on network parameters and 

flow statistics as estimated by the profiler, such as round-trip delay and segments-per-

burst distribution. By constantly updating these, the steady-state throughput is 

estimated, taking into account potential changes to the number of active TCP flows, 

network state etc. This approach is advantageous for achieving fast conversion times 

caused by sudden state changes. TCP flow profiling and estimation of the network 

parameters allows pro-active network management, capacity planning and ultimately 

enhancing network performance and improving bandwidth utilization. 

The performance of a single TCP flow over OBS has been analyzed in 0 giving 

closed formulas for estimating steady-state throughput for a given burst loss ratio, 

RTT and number of segments-per-burst. Here, we derive steady-state TCP 

throughput, assuming that the burst loss ratio, the segments-per-burst distribution and 

RTT statistics are evolving over time, and are constantly updated by the profiler.  

The steady state throughput of a single TCP flow in an OBS network with a known 

number of segments per burst (SPB) and round trip time (RTT) and a known burst 

loss ratio p is obtained by the formula: 

-(,�-, A00) = √1.5 ∗ ,�- A00 ∗ $�Q  . (12) 

 



Assuming different RTTs and access rates per TCP flow, with SPB(i) being the 

empirical distribution of segments per burst, and RTT(i) being the distribution of 

round-trip times, we calculate the average TCP throughput over OBS as: 

-R = 5 S 1A00T ∗ 5 U√1.5 ∗ ,�-
$� V . (13) 

 

Or equivalently: 

-R =  W 1A00RRRRRRX � �+,�- = ,�-J. ∗ √1.5 ∗ ,�-J
$�

6
� �

∗ ),, . (14) 

 

Both Y1/A00RRRRRRRRRZ  value and segment-per-burst distribution  ,�-(J) are estimated by 

the traffic profiler, and so is burst loss ratio p. Coupled with the measured number of 

steady-state flows at time t, �[(\), the above formula can provide a constantly 

updated estimate of aggregated TCP steady-state throughput over OBS, denoted by 

R(t):  

 R(t) = �[  (\) ∗ -R . (15) 

 

4   Profiler Evaluation  

The TCP profiler was evaluated with simulations using ns-2 platform. A simple 3-

node topology was used, consisting of two edge routers, denoted as E1 and E2 

interconnected via a single core router, denoted as C. Clients are assigned to edge 

node E1 and initiate file transfers on servers assigned to E2. The modeled OBS 

network uses JET protocol for resource reservations. Burst assembly process is 

performed at the edge nodes, using a timer-based aggregation algorithm (TMAX) with a 

time threshold of 3ms. The network round trip time was set equal to 15ms, while all 

clients had a uniformly distributed access delay in the interval [0,2] ms and a 

uniformly selected access rate of 20Mb, 50Mb and 100Mb. A realistic traffic scenario 

was modeled, that consists of TCP connection requests, whose arrivals follow Poisson 

distribution and their sizes are drawn from Pareto distribution. The traffic profile is 

representative of typical internet workloads, with many short-lived TCP connections 

representing web requests, and fewer long-lived file transfers, responsible for the 90% 

of the overall bytes transmitted. In what follows, numerical results are based only on 

long-lived flows, since short flows spending their lifetimes in the slow-start phase 

were filtered-out by the profiler. 

The exact parameters of the each file transfer were estimated by the profiler, which 

was evaluated with three different flow sampling probabilities, � = +1 2` , 1 10` , 1 20` .. This corresponds to one flow being sampled out of N active 

flows, with N = 2, 10, 20. High sampling ratios lead to higher accuracies. In what 



follows, we present experimental results comparing real and estimated TCP flow 

parameters for all flow sampling ratios. 

Figure 1 displays the evolution of the aggregated throughput. It can be seen that the 

estimator’s output closely follows the measured real value of the steady-state 

throughput especially for high sampling rates, relying solely on the running 

estimation of burst loss ratio, number of active flows and flow-level statistics like 

segments-per-burst distribution and RTT. Additionally, as expected, higher sampling 

rates yield more accurate throughput estimations. 

 
Fig. 1. Estimated versus true steady-state throughput,  

for different sample rates 

 

 Figure 2 displays the estimated number of active flows. Again, the estimated 

number of flows closely follows the real number of active flows while again 

estimation accuracy improves with the increase of sampling rate. It must be noted 

however that the number of flows lacks the burstiness of TCP throughput and thus it 

is less sensitive to the selection of the flow sampling rate. 

 

  
Fig. 2. Number of active flows estimation 
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Finally, for the characterization of the estimator’s accuracy we have calculated the 

Cumulative Density Function (CDF) of the Mean Absolute Error (see Figure 3) as 

well as the Coefficient of Variation (CoV) metric as an indication of the variance of 

the estimator and the Root Mean Square Error value (see Table 1), for all sampling 

ratios, for both the real and the estimated throughput samples throughout the 

simulation cycle.  

 

 
Fig. 3. Mean Absolute Error cumulative density function 

 

Table 1.  Predictor standard error  

 p=0.5 p=0.1 p=0.05 

Coefficient of Variation (CoV) 0,037 0,10 0,17 

Root Mean Square Error (RMSE) 2945 8147 11326 

 

 

5   Conclusions 

In this paper, a TCP profiler has been designed for OBS networks, which is 

capable of estimating aggregated TCP throughput. The profiler operation relies solely 

on the running estimations of burst loss ratio, number of active flows and flow-level 

statistics like segments-per-burst distribution and RTT. These are used to estimate 

steady-state performance of TCP traffic over OBS networks. Simulation results have 

shown that the proposed scheme adequately profiles flow dynamics with a low 

accuracy variation and a low mean absolute error value. 
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