
Profiling TCP traffic in Optical Burst Switching

Networks

Kostas Ramantas and Kyriakos Vlachos

Computer Engineering and Informatics Department & Research Academic

Computer Technology Institute, University of Patras, Rio, Greece
{ramantas, kvlachos}@ceid.upatras.gr

Abstract. The efficient transmission of TCP traffic over OBS networks is a

challenging problem, due to the high sensitivity of TCP congestion control

mechanism to losses. In this paper, a traffic profiling scheme is proposed for

gathering TCP flow statistics, which are used to estimate steady-state

performance of TCP traffic over OBS networks. The burst assembly unit, in

parallel to the assembly process, can inspect TCP traffic, keeping traffic

statistics that can be used for throughput estimations. In this paper, we detail the

traffic profiling and estimation mechanism and also provide analytical and

simulation results to assess its performance.

Index Terms: TCP profiling, traffic estimation, Optical Burst Switching, Burst

Assembly

1 Introduction

TCP transmission over OBS [1], has been extensively studied in the related literature.

Various burst assembly and burst scheduling algorithms have been proposed, 0 , to

enhance the efficient transmission of TCP over OBS networks but still remains an

open problem, since the (relatively) high burst loss ratio experienced in OBS

networks is incompatible with TCP congestion control mechanism. It has been

observed that burst losses have a significant impact on the TCP end-to-end

performance, as shown in [3], [4]. In particular, TCP transmission over OBS networks

suffers from the high number of segments that are lost, upon a single burst drop. This

typically results in many sources timing out and which will subsequently enter a slow

start phase. This may also result in synchronizing TCP transmissions with an

imminent effect on link utilization, 0. Further, the introduction of an unpredictable

delay, challenges the window mechanism used by TCP protocol for congestion

control. In this work, we focus on TCP flow profiling in OBS networks which can

provide insights to the network operators, regarding user-perceived performance, and

serve as a basis for capacity planning.

TCP flow profiling is extremely useful, as TCP traffic represents a dominant and at

the same time very predictable part of internet workload. According to recent internet

measurement studies 0, TCP protocol is responsible for over 95% of total bytes

transmitted. Additionally, it has been established that internet workload is heavily-

tailed and a large part of network capacity is dedicated to long-lived file transfers.

Most of this traffic is mainly P2P files exchanges, and web file transfers, as well as

online video connections over HTTP (i.e. Youtube). Moreover, as shown in 0, the

TCP throughput of large transfer TCP flows over OBS, collapses to a single fixed

operating point (called equilibrium) enabling the accurate prediction of aggregate

TCP throughput. However, aggregate throughput statistics have a limited, since they

only reflect the network state, when traffic measurements are taken. Network

operators are mainly interested in flow-level statistics, exported for example by

enterprise routers through Cisco Netflow protocol 0. Flow-level statistics can provide

insights for user-perceived performance, and they are useful for network management

and capacity planning. Estimating flow-level statistics is a resource-intensive process,

as it involves specialized monitoring equipment that captures packets from monitored

flows and extracts statistics. Typically, a small percentage of the original network

flows is monitored, denoted as “flow sample”. There is a lot of research done on

sampling TCP flows 0, and optimally estimating flow statistics from flow samples 0,

a process that is called “inversion”.

In this paper, we propose a TCP traffic profiler for OBS networks, which performs

on-line estimation of active TCP flow statistics, as well as network parameters like

burst loss ratio and round trip time. The rest of the paper is organized as follows.

Section II discusses predictability issues of long-lived TCP traffic, while Section III

presents the TCP traffic estimator that can be used for predicting burst sizes. Finally,

Section IV presents performance evaluation results, obtained through simulations

using ns-2.

2 TCP Traffic Profiling in OBS networks

In this section, the main issues and challenges are discussed, for collecting TCP traffic

statistics in OBS networks. In principle, collecting detailed traffic information for

active TCP connections provides an intimate traffic knowledge, which can serve as a

basis for traffic engineering. Flow-level metrics like flow size distribution, number of

active flows, and average throughput are useful for network management and capacity

planning.

2.1 Collecting Traffic Statistics in OBS networks

For gathering flow-level traffic statistics, a monitoring system is required, that stores

and constantly updates a record of sampled flows. Cisco Netflow 0 is an example of

such system, deployed in commercial enterprise-class routers. For gathering network-

wide traffic statistics, a node with access to all packets transmitted is needed. In OBS

networks, this node can be the burst assembler. Burst assembler is well suited for

gathering traffic statistics, having access to all packets received. Packet headers have

to be examined, before being assigned to the appropriate burst assembly queue,

assuming that a separate queue for each source-destination pair is kept. Thus, keeping

traffic statistics does not bear a significant overhead for edge nodes, provided that

very short-lived TCP connections are filtered-out.

It has to be noted that in real-world networks, long-lived TCP flows constitute both

the dominant (in terms of bytes transmitted) and the most predictable part of network

traffic. Internet workloads are regarded to be heavy-tailed 0, i.e. their flow length

distribution Z follows a probability distribution such that the right tail has power-law

decay, or:

��� > ��~ �	
, � → ∞ .
(1)

Long-lived flows, also known as “elephant flows”, are responsible for the 80% of

the overall bytes transmitted. This has been verified by recent internet measurement

studies in 0, where it has been found that the majority of data transmissions over the

internet is due to large file transfers, online video downloads over HTTP (i.e.

YouTube) and P2P file exchanges. On the other hand, the average size of data

transmitted from interactive Web request is fairly small, in the order of 26–30 kB,

with a small contribution to overall bandwidth and a high degree of burstiness. To this

end, it becomes clear that it is preferable to filter-out short-lived flows and gather

statistics solely for long-lived TCP flows. This requires the profiler to effectively

distinguish short-lived from long-lived flows, and can be carried out by defining a

flow lifetime threshold θ, that is intuitive and easy to implement.

In what follows, we focus on the TCP traffic predictability issues, and argue that

formula-based TCP throughput estimation for long-lived TCP traffic is a viable

solution.

2.2 Predictability of Long-Lived TCP flows in OBS networks

The feedback control mechanism of TCP protocol is a well known mechanism for

introducing a degree of predictability in TCP traffic. TCP flows are prevented from

transmitting at the full link capacity, to avoid saturating the network, and they can

only transmit as many packets as their congestion window (cwnd) allows. Newly

arrived flows have to “probe” for network capacity, by starting their transmission with

a cwnd of 1, and which is doubled in every lossless round. TCP flows ultimately reach

steady state (or congestion avoidance state) after the first segment loss is detected,

which corresponds to network equilibrium. In such a case, all flows fairly share the

available bandwidth.

TCP congestion avoidance algorithm operates in a purely deterministic way, while

TCP window in an idealized scenario follows a periodic “saw tooth” profile. This

traffic pattern is common to all TCP implementations that only differ in the fast

recovery phase, with a small contribution in the overall throughput.

It has been established in 0 that traffic dynamics of large transfer TCP flows can be

accurately estimated by making use of appropriate performance modeling formulas.

This is due to the fact that long-lived flows’ congestion window ultimately converges

to a steady state, reaching equilibrium. In [7] the authors show that they can

accurately predict the network fixed point (i.e. the steady state input rates of long-

lived TCP flows) over an OBS link. Formula based throughput estimation requires

up-to-date measurements of burst loss ratio p, flow round trip time (RTT) and

segment per burst distribution. Studies on TCP predictability have concluded that

accuracy is negatively impacted by unpredictable queuing delays in congested paths.

This results in fluctuating RTTs that affects the accuracy of the TCP performance

estimation formulas. However, due to the bufferless nature of OBS networks, large

transfer TCP flows over OBS are expected to be very predictable. The accuracy of

TCP bandwidth estimation depends on the accuracy of the estimated network

parameters, like burst loss ratio, as well as TCP flow statistics like flow access rates

and access delays.

3 TCP Flow Profiler Architecture

In this section, the profiler architecture is presented, as well as how flow statistics are

formed from a subset of active flows, called the flow sample. Flow sampling is

employed for limiting the consumption of resources required to extract flow statistics

from traffic measurements, which would be prohibitive if all packets and flows were

retained. Thus, it follows that the flow statistics from unsampled flows must be also

estimated, based on the sampled flow statistics, a procedure commonly referred as

inversion. In this work, unbiased estimation of flow statistics is achieved by selecting

the flow sample independently of measured statistics (unbiased selection). As an

example, for performing an unbiased estimation of flow length distribution, sampled

flows are selected independently of the flow length. Thus, the statistics of the sampled

flows are expected to converge to the ones of the unsampled flows, as the number of

sampled flows approaches the overall number of active flows.

In what follows, a TCP flow profiler is designed, which is integrated with the burst

assembly process. Its goal is to provide running online measurements of flow and

network performance metrics. These metrics are constantly updated, so that they don't

become outdated. Being in the middle of the flow end-to-end path, the flow profiler

has access to all segments transmitted from TCP sources assigned to the burstifier,

and it is able to inspect TCP segment headers without incurring excessive overheads.

It does not have information on TCP segments lost before the burst assembly process,

or on internal TCP sender state (like congestion window). The profiling module

proposed here performs an estimation of the following metrics:

• Burst loss ratio

• Number of active long-lived TCP flows

• TCP performance variables (RTT, access rate)

• Steady-state TCP throughput

Passive estimation techniques are used in our profiler for compiling flow statistics,

as opposed to active estimation techniques, where probing sessions are initiated by the

profiler. Passive techniques allow monitoring of a large number of flows in a diverse

set of network paths without interfering with traffic flows. Most of the metrics can’t

be estimated in a stateless manner. In order to compile flow statistics, a table of flow

records, indexed by flowID must be maintained. A representative, unbiased flow

sample has to be stored in this flow table, so that traffic statistics of the sampled flows

match the traffic statistics of the unsampled flows. Usually, the traffic sample is a

small percentage of the overall flow population (typically less that 1%) as the overall

number of flows assigned to a burstifier is in the order of millions.

In the proposed scheme, TCP profiler divides active flows in sampled and un-

sampled ones according to the flow sample rate N, which defines that only 1 in N

flows is sampled on average. For every packet that is received by the burstifier, the

profiler determines if the packet will be retained and whether a flow record is active

for it’s flowID. If a flow record is active, the flow statistics are updated on the

reception of the packet. If not, it instantiates a new record with the packet’s flowID.

The primary constraints of flow-level profilers are the memory bandwidth and

memory size limitations, since millions of flows can be assigned to a single

monitoring device. The memory bandwidth of DRAMs utilized in typical Netflow

capable routers 0 is not sufficient to lookup the flowID of all incoming packets, thus a

small sampling ratio is used. To cope with this problem, in 0 an alternative profiling

architecture was proposed, based on fast SRAMs. However, SRAMs are expensive

and come in very small sizes as compared to DRAMs – thus being capable of storing

a smaller flow sample.

In this work, we employ hash-based sampling technique, which avoids memory

lookup for packets belonging to unsampled flows, resulting in large memory

bandwidth savings. According to this technique, the profiler calculates a hash value

for the flowID for every received packet, i.e. h = f(flowID), which is normalized in

the interval h є [0,1]. Since hash algorithms are designed with an objective to evenly

distribute a stream of (possibly correlated) values, the hash value is uniformly

distributed and thus can serve as an unbiased criterion of flow selection. Thus, if ℎ ≤ 1/�, with N the flow sample rate, the flow is sampled or else it is not.

The abovementioned selection technique is unbiased and efficient, since, one can

track as many flows as the DRAM memory bandwidth allows, and accordingly set the

value of the sample rate N. Additionally, since in OBS networks the burst assembler

has to inspect packet headers in order to assign them to the appropriate queue, this

technique only adds-up a few clock cycles overhead per received packet. Similar

works that calculate hashes of received TCP packet flowIDs were able to track

millions of flows at line speeds 0.

The efficiency of the abovementioned technique can be further enhanced by

filtering out slow flows. One-packet long TCP flows have a disproportionally large

frequency, owing to HTTP protocol (clients send http requests to web servers

encapsulated in a single packet). To avoid wasting resources for storing one-packet

flows, in the proposed scheme, new records for slow flows (i.e. flows with a single

data packet in a burst) are not created.

3.1 Burst loss ratio estimation

The estimation of the burst loss ratio is carried out using the signaling messages

received by the edge router’s control unit. For every dropped burst the core node

returns a message (BHP_DROP) to the edge router to report the loss. This is

communicated to the profiler, which stores a bit vector of bursts successfully

transmitted (denoted with ‘0’) and bursts lost (denoted with ‘1’). Bit values Xk are

assumed independent Bernoulli random variables that take value ‘1’ with a

probability equal to the burst loss ratio. The burst loss ratio is thus estimated as the

sum of ‘1’ values in the vector divided by the vector length W. Thus, the burst loss

ratio is defined as:

� = ∑ ����� . (2)

For the online estimation of burst loss ratio, we use the well known sliding window

averaging technique that discards aging values, older than the vector length.

According to this technique, proposed in 0, for packet loss ratio estimation, given that

Xk is the k
th

 bit value of the vector corresponding to the k
th

 burst transmission and W is

the vector length, a running estimation of burst loss ratio is obtained by:

����� = 1� � ��
�

� �	���
 . (3)

The vector length W is calculated based on the desired accuracy, using the analytic

model proposed in 0. The estimated burst loss ratio error for a vector length W, a real

burst loss ratio p and a confidence interval of 95% is derived as:

! = 1.96$�(1 − �)/�� . (4)

Thus, for a burst loss ratio of 1% and an error rate of 0.002, this corresponds to a

bit vector length of 4.000 values, which is the one used in our experiments.

3.2 Access rate and RTT estimation

Flow access rate depends on the bottleneck link across the path from the sender to

the edge router, for which the burstifier has no knowledge. It can be estimated by

finding the maximum number of segments that a flow injects in a burst. Thus, it

requires estimating segment-per-burst ratio for the sampled flows, throughout their

duration while retaining its maximum value. Then, the flow access rate for flow-i,

denoted as ri, can be estimated as:

(� =)*�+,�-�. ∗),,0123 . (5)

Where SPB is the segment-per-burst ratio, MSS is the maximum segment size and

TMAX is the burst assembly time. With respect the round-trip time of the sampled

flows, it can be easily estimated at the flow setup phase during the three-way

handshake period, a procedure detailed in 0. The profiler must keep track of the time

each control packet was received (SYN, SYN-ACK and ACK), which allows the

direct computation of the Profiler-to-Server and Client-to-Profiler round trip times.

The flow RTT is estimated as the sum of these two values.

3.3 Long Lived Flows threshold

For distinguishing flows between long and short lived, we define a threshold in the

flow length. If the observed flow length (i.e. packets or bytes transmitted) is smaller

than a threshold denoted with θ, then it is classified as short lived – otherwise it is

classified as long-lived. It has been mentioned previously that steady-state throughput

of large file transfers constitute a large part of internet traffic, while their flow

dynamics are very predictable. Thus, we may set threshold θ as the expected flow

length at the time that the first packet loss occurs. After this loss, flow will enter the

congestion avoidance phase. Selecting the expected flow length as the threshold is

much more efficient than passively estimating TCP state of individual active flows, a

process which is TCP implementation dependent and very computationally intensive.

In contrast, the proposed technique is more straightforward, easy to implement, and it

is implementation-agnostic, as it assumes an idealized congestion window evolution.

It assumes that TCP flows begin their transmission with a congestion window of one

that doubles per lossless round, while after the first segment loss, the flows enter the

congestion avoidance state, in which they stay until they conclude their transmission.

Fast retransmit/fast recovery and Time-Out phases are not taken into account, as they

have a minimal effect on TCP performance for small burst loss ratios.

The expected file size transmitted until the first loss, which serves as the long-lived

flow threshold, is estimated analytically. In an OBS network packet losses are

correlated, due to the assembly of multiple packets in a single burst. Thus, packet loss

ratio is not identical to the burst loss ratio. One burst loss carrying at least one packet

of a flow in the slow-start phase is enough to agitate the flow to its congestion

avoidance (steady-state) phase, regardless of the number of assembled packets carried

by the burst. Assuming that burst losses in OBS networks are independent events, the

probability of transmitting k bursts before a loss occurs and assuming a burst loss

ratio p is:

 ��- = 4� = (1 − �)�� .
(6)

The number of segments that are assembled in a single burst denoted as SPB

(segments-per-burst ratio) depends on the flow access rate, the burst assembly period

and also by the flow congestion window. Thus, the number of segments transmitted

before the first loss occurs can be approximated as:

5��� = , ∗ 5�-� = , ∗ �(1 − �)��6
7

= ,�-� . (7)

The value ,�-/� is equal to the TCP Triple Duplicate Period (TDP) over OBS,

derived from 0. Alternatively, for long-lived flow-i that had no loss before saturating

their local capacity, the bandwidth-delay product ri*RTTi can be used as threshold,

where both values are estimated by the profiler. For a typical burst loss ratio of 1%

and a value of SPB=4, the flow threshold corresponds to 400 segments. This value is

considerably higher than the average HTTP request size, and thus can successfully

serve as a definite criterion of differentiation.

Next, we argue that in heavy-tailed workloads like the ones in the internet, the

majority of bytes are transmitted after the threshold has been reached, i.e. in the

steady-state phase. In 0, web traffic is classified in web requests, shown to follow a

heavy-tailed distribution with parameter α = 1.21 and web file transfers shown to

follow a heavy-tailed distribution with heavier tail weights, and α = 1.1. Due to the

heavy-tailedness of the workload, long-lived flows are very likely to continue being

active a long time after they have been identified as such, i.e. long after they have

exceeded the long-lived flow threshold. Heavy-tailed flow length distribution Z has

the following fundamental property:

lim;→6 Pr�� > � + 4 | � > �� = 1 .
(8)

This denotes that for flows with a long duration (z→∞) the probability of

transmitting k extra bytes before concluding their transmission is large, i.e. Pr�� >� + 4� → 1 as � → ∞. In other words, the longer the flow duration is, the higher it’s

expected residual life is. As an example, assuming that file sizes follow Pareto

distribution, with an index parameter @ = 1.1, then assuming that the flow reached

the threshold θ, its Mean Residual Life (i.e. the expected number of bytes the flow is

expected to transmit before closing) is 0:

)AB(C) = 11 − D C = 10 ∗ C . (9)

Thus, flows characterized as long-lived, transmit more than 90% of their file size

after having reached threshold C, in the steady-state phase.

3.4 Long-Lived Flow Counting

In the proposed architecture, the number of active long-lived flows that have been

assigned to the burstifier, along with their TCP state has to be known. A sampled flow

is regarded active as long as it’s flowID is stored in the flow table. The flowID is

inserted after the first packet from the flow is received at the burstifier, and it is

removed after a time threshold of inactivity (few RTTs). Thus, the number of active

sampled flows is the number of distinct flowIDs in the table. In addition, the number

of active sampled long-lived flows, is the number of distinct flowIDs exceeding

threshold C, as defined in previous section. This is a valid assumption, since the

proposed TCP profiler architecture guarantees unbiased selection of the flow sample.

Sampled flows have a fixed probability of being selected, irrespective of their

duration or their ON period. This can be formulated as (following the same rationale

as in 0): Assuming that the number of active long-lived flows at a given time on the

network is �FGG, each one of them (due to unbiased selection) is modeled with an

independent Bernoulli random variable wi with a selection probability of 1/N. The

expected number of selected flows (assuming a selected flow contributes ‘1’ to the

sum) is:

�FH GG = � ∗ � IJKL

� �
 . (10)

where �FGG is the number of steady-state flows and N is the inverse of the sample

rate. Thus, the true number of active long-lived flows converges to the number of

sampled long-lived flows multiplied by N, i.e. the above equation performs an

unbiased estimation of the number of long-lived flows. Regarding the variance of the

estimator, it is bounded by the number of active long-lived flows on the system

(�FGG) as well as the profiler sampling rate 1/N. Specifically, the standard error of the

estimator is:

$M@((�FH GG)�FGG = N ��FGG . (11)

It can be seen that the estimator variance is small and can be made arbitrarily small

when a high sample rate is used.

3.5 Estimating aggregated steady-state throughput

The goal of the steady-state throughput estimation process is to calculate the

aggregated steady-state throughput of file transfers, based on TCP traffic statistics at

the flow level. TCP throughput calculations are based on network parameters and

flow statistics as estimated by the profiler, such as round-trip delay and segments-per-

burst distribution. By constantly updating these, the steady-state throughput is

estimated, taking into account potential changes to the number of active TCP flows,

network state etc. This approach is advantageous for achieving fast conversion times

caused by sudden state changes. TCP flow profiling and estimation of the network

parameters allows pro-active network management, capacity planning and ultimately

enhancing network performance and improving bandwidth utilization.

The performance of a single TCP flow over OBS has been analyzed in 0 giving

closed formulas for estimating steady-state throughput for a given burst loss ratio,

RTT and number of segments-per-burst. Here, we derive steady-state TCP

throughput, assuming that the burst loss ratio, the segments-per-burst distribution and

RTT statistics are evolving over time, and are constantly updated by the profiler.

The steady state throughput of a single TCP flow in an OBS network with a known

number of segments per burst (SPB) and round trip time (RTT) and a known burst

loss ratio p is obtained by the formula:

-(,�-, A00) = √1.5 ∗ ,�- A00 ∗ $�Q . (12)

Assuming different RTTs and access rates per TCP flow, with SPB(i) being the

empirical distribution of segments per burst, and RTT(i) being the distribution of

round-trip times, we calculate the average TCP throughput over OBS as:

-R = 5 S 1A00T ∗ 5 U√1.5 ∗ ,�-
$� V . (13)

Or equivalently:

-R = W 1A00RRRRRRX � �+,�- = ,�-J. ∗ √1.5 ∗ ,�-J
$�

6
� �

∗),, . (14)

Both Y1/A00RRRRRRRRRZ value and segment-per-burst distribution ,�-(J) are estimated by

the traffic profiler, and so is burst loss ratio p. Coupled with the measured number of

steady-state flows at time t, �[(\), the above formula can provide a constantly

updated estimate of aggregated TCP steady-state throughput over OBS, denoted by

R(t):

 R(t) = �[(\) ∗ -R . (15)

4 Profiler Evaluation

The TCP profiler was evaluated with simulations using ns-2 platform. A simple 3-

node topology was used, consisting of two edge routers, denoted as E1 and E2

interconnected via a single core router, denoted as C. Clients are assigned to edge

node E1 and initiate file transfers on servers assigned to E2. The modeled OBS

network uses JET protocol for resource reservations. Burst assembly process is

performed at the edge nodes, using a timer-based aggregation algorithm (TMAX) with a

time threshold of 3ms. The network round trip time was set equal to 15ms, while all

clients had a uniformly distributed access delay in the interval [0,2] ms and a

uniformly selected access rate of 20Mb, 50Mb and 100Mb. A realistic traffic scenario

was modeled, that consists of TCP connection requests, whose arrivals follow Poisson

distribution and their sizes are drawn from Pareto distribution. The traffic profile is

representative of typical internet workloads, with many short-lived TCP connections

representing web requests, and fewer long-lived file transfers, responsible for the 90%

of the overall bytes transmitted. In what follows, numerical results are based only on

long-lived flows, since short flows spending their lifetimes in the slow-start phase

were filtered-out by the profiler.

The exact parameters of the each file transfer were estimated by the profiler, which

was evaluated with three different flow sampling probabilities, � = +1 2` , 1 10` , 1 20` .. This corresponds to one flow being sampled out of N active

flows, with N = 2, 10, 20. High sampling ratios lead to higher accuracies. In what

follows, we present experimental results comparing real and estimated TCP flow

parameters for all flow sampling ratios.

Figure 1 displays the evolution of the aggregated throughput. It can be seen that the

estimator’s output closely follows the measured real value of the steady-state

throughput especially for high sampling rates, relying solely on the running

estimation of burst loss ratio, number of active flows and flow-level statistics like

segments-per-burst distribution and RTT. Additionally, as expected, higher sampling

rates yield more accurate throughput estimations.

Fig. 1. Estimated versus true steady-state throughput,

for different sample rates

 Figure 2 displays the estimated number of active flows. Again, the estimated

number of flows closely follows the real number of active flows while again

estimation accuracy improves with the increase of sampling rate. It must be noted

however that the number of flows lacks the burstiness of TCP throughput and thus it

is less sensitive to the selection of the flow sampling rate.

Fig. 2. Number of active flows estimation

25000

40000

55000

70000

85000

100000

115000

1 16 31 46 61 76 91 106 121

B
a

n
d

w
id

th
 (

P
a

ck
e

ts
/s

e
c)

Time (sample periods)

Real

p=0.5

p=0.1

p=0.05

0

100

200

300

400

500

600

700

800

900

1 11 21 31 41 51 61 71 81 91 101

N
u

m
b

e
r

o
f

Fl
o

w
s

time (sample periods)

Real

p=0.5

p=0.1

p=0.05

Finally, for the characterization of the estimator’s accuracy we have calculated the

Cumulative Density Function (CDF) of the Mean Absolute Error (see Figure 3) as

well as the Coefficient of Variation (CoV) metric as an indication of the variance of

the estimator and the Root Mean Square Error value (see Table 1), for all sampling

ratios, for both the real and the estimated throughput samples throughout the

simulation cycle.

Fig. 3. Mean Absolute Error cumulative density function

Table 1. Predictor standard error

 p=0.5 p=0.1 p=0.05

Coefficient of Variation (CoV) 0,037 0,10 0,17

Root Mean Square Error (RMSE) 2945 8147 11326

5 Conclusions

In this paper, a TCP profiler has been designed for OBS networks, which is

capable of estimating aggregated TCP throughput. The profiler operation relies solely

on the running estimations of burst loss ratio, number of active flows and flow-level

statistics like segments-per-burst distribution and RTT. These are used to estimate

steady-state performance of TCP traffic over OBS networks. Simulation results have

shown that the proposed scheme adequately profiles flow dynamics with a low

accuracy variation and a low mean absolute error value.

Acknowledgements.

The work described in this paper was carried out with the support of the BONE-

project ("Building the Future Optical Network in Europe”), a Network of Excellence

funded by the European Commission through the 7th ICT-Framework.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

C
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n

fu
n

ct
io

n

Mean Absolute Error

p=0.5

p=0.1

p=0.05

References

1. C. Qiao and M. Yoo, “Optical burst switching (OBS)-A new paradigm for an optical

internet,” J. High Speed Networks, vol. 8, no. 1, pp. 69–84, 1999.

2. J Li, C Qiao, J Xu, D Xu , “Maximizing throughput for optical burst switching networks”,

IEEE/ACM Transactions on Networking (TON), 2007

3. X Yu, C Qiao, Y Liu, D Towsley, "Performance evaluation of TCP implementations in OBS

networks", Technical Report 2003-13, CSE Dept., SUNY, Buffalo, 2003

4. X. Yu, J. Li, X. Cao, Y. Chen and C. Qiao; “Traffic statistics and performance evaluation in

optical burst switched networks”, IEEE/OSA Journal of Lightwave Technology, vol. 22, no.

12, pp. 2722 – 2738, Dec. 2004.

5. Oscar González, Anna Maria Guidotti, Carla Raffaelli, Kostas Ramantas, Kyriakos Vlachos,

“ On transmission control protocol synchronization in optical burst switching”, Photonic

Network Communication, Vol. 18 Number 3, is pp. 323 - 333, March 2009.

6. Cisco Systems, “NetFlow services and applications,” White Paper, 2000

7. C. Cameron, H. Le Vu, J. Choi, S. Bilgrami, M. Zukerman, and M. Kang, “TCP over OBS -

fixed-point load and loss”, Optics Express, vol. 13, no. 23, pp. 9167-9174, 2005.

8. G Maier, A Feldmann, V Paxson, M Allman , “On dominant characteristics of residential

broadband internet traffic”, Proc. ACM IMC, 2009

9. Q He, C Dovrolis, M Ammar, “On the predictability of large transfer TCP throughput”,

ACM SIGCOMM 2005

10. DV Schuehler, JW Lockwood, “TCP splitter: A TCP/IP flow monitor in reconfigurable

hardware”, IEEE micro, 2003

11. M Yajnik, SB Moon, J Kurose, D Towsley, “Measurement and modeling of the temporal

dependence in packet loss” IEEE INFOCOM, 1999

12. Hao Jiang, C. Dovrolis, “Passive estimation of TCP round-trip times”, ACM SIGCOMM

2002

13. K. Park, G. Kim, and M. Crovella. “On the relationship between file sizes, transport

protocols, and self-similar network traffic” In Proc. IEEE ICNP, 1996.

14. N Duffield , C Lund , M Thorup, “Properties and prediction of flow statistics from sampled

packet streams”, Proceedings of the 2nd ACM SIGCOMM Workshop on Internet

measurment, 2002

15. P. Tune, D. Veitch, “Towards optimal sampling for flow size estimation”, Proceedings of

the 8th ACM SIGCOMM, 2008

16. C Estan, G Varghese, “New directions in traffic measurement and accounting: Focusing on

the elephants, ignoring the mice”, ACM Transactions on Computer Systems, 2003

17. S Luo, JH Li, K Park, R Levy, “Exploiting Heavy-Tailed Statistics for Predictable QoS

Routing in Ad Hoc Wireless Networks”, IEEE INFOCOM 2008

