
Processing and Scheduling Components in an

Innovative Network Processor Architecture

K. Vlachos
1
, N. Nikolaou

1
, T. Orphanoudakis

2
, S. Perissakis

2
, D. Pnevmatikatos

3
,

G. Kornaros
2
, J.A Sanchez

1
 and G. Konstantoulakis

4

1: Bell Labs AT EMEA Lucent Technologies, E-mail: kvlachos@bell-labs.com

2: Ellemedia Technologies, 3: Technical University of Crete, 4: InAccess Networks

Abstract

In this paper, we describe the architecture of an

innovative network processor aiming at the acceleration

of packet processing in high speed network interfaces

and at the tight coupling of low and high level protocols.

The proposed design uses programmable hard-wired

components with line rate throughput and is capable of

executing protocols and handling efficiently high and

low level streaming operations. We discuss the details of

the main innovation of the proposed design, which

incorporates a three stage RISC-based pipelined module

and a composite scheduling unit for internal resource

management and outgoing traffic shaping. When both

components are integrated on the same platform then

maximum and fair utilization of the available resources

is achieved. Quantitative performance results are given,

both by means of microcode profiling and simulation for

indicative applications of the protocol processor.

1. Introduction

Despite the recent slowdown in the

telecommunications industry, the growth in data traffic

especially the traffic associated with Internet based

applications, continues to expand exponentially. With

today's DWDM the capacity of a single fiber has

increased 160-fold. However DWDM does not hold all

the answers to solving bandwidth demand. On the

contrary, new aggressive requirements for the

telecommunications networks have been set, shifting the

bottleneck from transport back to the network nodes.

Coping with the nodes’ bottleneck however is not easy.

Although the advances in Si technology and

complementary metal oxide semiconductor, the increase

in line cards speeds and performance demand outpaces

the rate at which RISC clock and bus speeds increase.

Thus, the necessity to increase packet-forwarding

capacity and to enhance performance will have to come

from the nodes’ increase in size and intelligence [1]. One

way to achieve this is by hybrid integrating RISC cores

with dedicated hardware. The so-called network

processors have to be re-configurable and fully

programmable in order to cut down time-to-market and,

at the same time, be able to support new features and

protocols, meeting the need of modern, highly-

sophisticated services (packet classification, flow

scheduling, firewall services etc.).

In this paper the architecture of a novel network

processor, called the Programmable Protocol Processor,

PRO3, is described and is used as reference to explore the

intricacies of the processing and scheduling components .

Section 2 presents the proposed PRO3 architecture, while

section 3 and 4 analyze the role of processing and

scheduling elements, respectively, in the proposed design

architecture. Finally section 5 presents simulation

performance results.

2. The PRO3 Architecture

The PRO3 system architecture, presented in this

section, follows a different approach in the area of high

speed protocol processing. The protocol processor aims

in accelerating execution of telecom protocols by

extending a high-performance RISC core with

programmable, pipelined hardware. CPU demanding and

(hard) real-time protocol functions are handled by the

programmable hardware, while the remaining functions,

as well as higher layer protocols are handled by the on-

chip RISC in an integrated way. Of key importance in

this architecture is the integration of the processing

elements of the system with scheduler components to

facilitate data processing in a fair, balanced manner and

to control data streams generated by the chip.

The functional architecture of the protocol processor is

depicted in Figure 1. The component consists of a central

processing unit with an embedded RISC and a Re-

configurable module, as well as of a set of on-chip

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

peripherals, common to protocols and streaming tasks.

The necessity of specialized Network Processors to

handle high-speed links and support demanding

applications stems from the fact that a certain subset of

the protocol processing tasks are highly resource

consuming, either in terms of computational complexity

or memory throughput. By properly analyzing the

bottlenecks in networking applications ([1], [2]) the set of

most critical functions can be significantly accelerated

with the aid of either fixed (for well-defined functions

that are standardized) or programmable hardware. Thus,

the same component with different configuration will be

able to perform many different protocol Finite State

Machines (FSMs) that require high performance

execution and handling of messages with low

propagation/processing delay.

Figure 1. PRO3 functional architecture

The on-chip peripherals of the protocol processor

contain the following modules: Message Recognition,

Generic Encoder/Decoder, Timer Pool, and Memory

Management. Generally protocol processing is initiated

by data reception from a network interface in the form of

packet with specific protocol information residing in an

appended header or trailer. Proper evaluation of the

necessary fields that hold the protocol information leads

to appropriate classification of the message. The Re-

configurable Module handles the execution either of

entire protocols or most frequently used and time-

consuming branches of protocol FSMs in error free

conditions, according to the requirements of each

application, the type of the message or the protocol

executed. The Re-configurable Module is accessible to

the main RISC CPU through which configuration code is

executed as well as protocol state information is

exchanged. The result of protocol processing in most

cases is an update in stored protocol state, as well as the

generation of a new or modified message/packet (a

function to be executed by the Generic Encoder/Decoder)

to be forwarded either to a higher layer protocol or to an

output network interface. The symbolic feedback bus

denotes potential return of messages in the input of the

component in case that a multi-protocol stack is

implemented. Implementation of timers, as well as

efficient memory management including look-up table

implementation, data and protocol context buffering are

also an integral part of the protocol processing problem

and potentially a bottleneck in generic architectures,

which however can be offloaded to dedicated hardware

units, as appearing in Figure 1.

For the PRO3 system implementation, we developed

both fixed hardware units, as well as optimized micro-

engines integrated with a commercial RISC processor in

a layered architecture optimized for efficient protocol

processing targeting link rates up to 2,5 Gbps. RISC

based micro-engines are best candidates when

programmability is required. The actual block level

PRO3 architecture is depicted in Figure 2. The PRO3

system is a distributed architecture incorporating

dedicated hardwire modules for pre-processing and post-

processing of low level protocols and two RISC-based

Pipeline Modules (RPM) operating in parallel to

facilitate load balancing and execution of protocols with

different incoming/outgoing data flows.

Packet pre-processing and lower layer protocol

functions are executed by means of hardwired

functionality (like the full ATM/CPCS layers), as well as

programmable PDU processing and packet classification

by means of a RISC-like micro-engine for Field

Extraction and a controller of a high throughput external

Ternary CAM (Content Addressable Memory) device for

flexible and deterministic classification.

Figure 2. Block architecture of PRO3 system.

Each RPM consists of a modified RISC core [3]

surrounded by a Field Extraction (FEX) programmable

microengine, which directly loads the required protocol

data to the RISC for processing, and a Field Modification

programmable engine (FMO in fig. 2) for flexible PDU

construction and header modification. All together form

a powerful 3-stage pipeline module capable of providing

the mixed hardware and software processing heart of the

system and performing the FSM of each protocol.

The Internal Scheduling Unit, which is also a

composite module, maintains a number of priority queues

in order to schedule the forwarding of packets for

processing according to the priority of each flow. It is

also used to multiplex the execution of data transactions

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

to the different internal destinations and/or allow for

interleaved transactions over the Internal Bus. A dual

scheduler module, configurable to operate either on fixed

size cells or variable length packets, supports aggregate

per group peak rate shaping for IP flows and guaranteed

peak rate shaping per ATM flow.

Other main blocks perform data/queue management

and higher layer protocol processing (performed in SW

on the on-chip standard Hyperstone RISC [3] or the

external CPU). The common high speed path (up to the

transport layer) is performed in the PRO3 hardware

pipeline, and higher layer applications on the internal

Hyperstone RISC CPU. Packets are stored per-flow in the

external DRAM in queues implemented as linked list

data structures [4] and can be retrieved by the Data

Memory Manager module (DMM) in response to specific

commands and be delivered over the internal bus either

to the RPM modules or to the control RISC CPU or to a

host CPU (via the insert/extract interface) or directly to

the output interface.

In general, the following sequence of operations is

applied to each incoming packet: reception,

classification, state processing, and transmission. Each of

these generic functions consists of a set of lower level

functions and can be understood as pipeline stages. In

case of exception the packet is redirected to the internal

or the external RISC CPU.

3. The RISC-based Pipelined Module, RPM

The RISC-based Pipelined Module consists of three

logical units: Field Extractor (FEX), the Protocol-

Processing Engine (PPE), which is a composite module,

and Field Modifier (FMO). The PPE itself consists of

three additional modules: the Modified Hyperstone RISC

(MHY), the RPM-Glue Logic (RPG), and the Read/Write

Control RAM module (RWR). Figure 3 depicts RPM top

level design architecture.

Figure 3. RISC-based Pipelined Module

This composite 3-stage design, where dedicated

functional units are interconnect with a RISC core, offers

an extreme advantage on tasks with high functional

diversity. In this way, the usefulness and efficiency of a

single processor core are extremely enhanced by

providing the means to tailor its circuits for special tasks

and reversely the diversity of applications of the

dedicated units with their highly optimized configuration

is broaden to accelerate protocol processing (or any

computing task), yielding a clear cost/performance

advantage. In a network processor, protocol portability is

achieved accompanied with a high functional diversity of

applications with significant performance improvement.

The Field Extraction/Modification Engines

The Field Extraction and Field Modification engines

of RPM module are pipelined and fully programmable

modules that operate on a protocol-based firmware. Thus,

only specific fields are extracted from FEX and fed to

PPE module and these only specific fields are updated

with their new values in FMO. This results in a constant

ratio of cycle budget-to-packet length and optimal total

processing time. The packets that are being received are

stored in DMM and only the first 64 or 128 byte,

containing the TCP/IP header information, called

hereinafter segments, which needs to be processed are

forwarded to RPM module. This efficient way of

processing offers clear advantage of the architecture that

differentiates it from other network processor designs.

The Modified Hyperstone RISC (MHY)

The Modified Hyperstone RISC (MHY) module is the

central protocol processing element in the PRO3 system.

The MHY is a derivative of the standard Hyperstone E1-

32XS microprocessor core [3]. Major architectural

features of the MHY are:

1) The most recent stack frames are kept in a register

stack, thereby reducing data memory accesses to a

minimum by keeping almost all-local data in registers.

The Modified Hyperstone RISC uses 32 global and 64

local registers of 32 bits each, 16 global and 16 local

registers directly addressable. Two sets of 14 global

registers and 64 local registers are accessible from

outside the core via a special port. Core accesses are

switchable between the two sets of 14 global registers and

between the two parts of a 32+32 register partitioning of

the 64 local registers. In this way, state and packet

information can be put into the register file by the RPM

Glue Logic, and through the added read port, updated

state and packet information is read out by the RPM Glue

Logic.

2) 16 KByte dual-ported and fully static On-Chip

Memory with the second port accessible from outside the

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

core. Through the added port, initialization and status

repots are obtained from an external/internal CPU.

Additionally pipelined memory access allows

overlapping of memory accesses with execution.

3) On-chip Instruction Cache omits instruction fetch in

inner loops and provides pre-fetch.

4) Variable-length instructions of 16, 32 or 48 bits

provide a large, powerful instruction set, thereby

reducing the number of instructions to be executed.

Primarily used 16-bit instructions halve the memory

bandwidth required for instruction fetch in comparison to

conventional RISC architectures with fixed-length 32-bit

instructions, yielding also even better code economy than

conventional CISC architectures. Most instructions are

executed in one cycle and are orthogonally set. An

instruction pipeline depth of just two stages —

decode/execute — provides branching without insertion

of wait cycles in combination with Delayed Branch

instructions.

The RPM-Glue Logic (RPG)

The RPM-Glue Logic (RPG) interfaces and transfers

data between the Field Extractor, the Field Modifier, the

Modified Hyperstone RISC and the Read/Write Control

RAM module. The main features of RPM-Glue Logic

are:

1) Programmable entry points for SW packet handling

according to protocol type and message type

2) Programmable handling of “input” and “output” parts

of flow state

3) Implements bypassing of updated flow state for back-

to-back processing of packets of the same flow

4) Full bandwidth input/output capacity

The operation of RPG for incoming packets includes

transferring of packet fields from the Field Extractor to

the local portion of the registers of the modified

Hyperstone core, and initiating packet processing when

the modified Hyperstone core has completed processing

of the previous packet. Additionally, RPG reads and

updates flow state information from and to the

Read/Write Control RAM and forward it to the MHY

core. It is worth noting that the MHY core does not have

direct access to the external memory and application

firmware is resident on its on-chip cache memory.

Respectively for outgoing packets RPG interprets the

outcome of the packet processing and transfers the

updated packet fields from the local portion of the

registers of the modified Hyperstone core to the Field

Modifier. Additionally, RPM Glue Logic has to maintain

consistency between the flow state information used in

the packet processing, by means of bypassing. When

packets of the same flow are processed back-to-back, the

state flow read from the Control RAM is stale, and the

RPG undertakes the responsibility to forward internally

the correct flow state information, implement the

necessary control and status registers for the operation of

the PPE, and perform reset and support the initialization

sequences for PPE.

To process a packet the RPM Glue Logic places the

extracted fields obtained from the Field Extraction

engine as well as the state information about the flow

into the MHY register file and/or internal memory. When

this is complete, dedicated signals are used to indicate

the correct packet data locations and dispatch tables to

point to the appropriate processing routine. While the

process is running, the RPM Glue Logic may use the

second part of the register file to already load the field

and state information for the next packet.

4. The Scheduler Unit

Scheduling in such a processor environment is

required to resolve contention for processing resources in

a fair manner, or to distribute in time the transmission of

packets/cells (in a network medium) due to traffic

management rules (shaping). It is evident that packets

from connections with low delay requirements should

bypass the FIFO service discipline and be forwarded for

internal processing with higher priority. When the

processor cannot sustain worst-case conditions under line

rates such as 2.5Gbps or 10Gbps, as is the case for TCP

stateful inspection, queuing is necessary and an

appropriate queuing service discipline has to be

implemented. The scheduler unit maintains a number of

priority queues in order to schedule the forwarding of

packets for processing according to a configurable

priority per flow or per QoS class. The scheduling unit

in the PRO3 system consists of a Task Scheduler Unit,

TSC, which controls the data flow in the high-speed

internal bus and a Traffic Scheduler Unit, TRS, to shape

the generated traffic according to traffic management

specifications and service level agreements.

Each flow is served by the DMM through a dedicated

queue (in which the data/packets are stored/reassembled)

directly indexed by the flowID value, assigned by the

Classifier, uniquely identifying the protocol data and

context for each connection and each layer of the

protocol stack. The DMM is responsible to temporarily

buffer incoming data packets, until they are fully

processed and ready to be forwarded (or discarded). It

implements queues of packets, one queue per active

connection, and each packet being of variable length.

The DMM segments the incoming packets into fixed-size

segments of 64 bytes. This segmentation of memory

space allows optimizing the memory utilization,

increasing the performance of the DMM, and reducing

the delay of high-priority packets [4]. The queues that

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

are managed by the DMM will be called Data Queues in

order to distinguish them from the TSC and TRS data

structures and are associated explicitly with one

destination within PRO3 and a specific handler/protocol

that will be used for the processing of each packet

classified in that queue. The data structures managed by

the TSC and TRS will be called hereafter Scheduling

Queues (and will be denoted as SIDQ). The organization

of the SIDQs will be discussed in detailed in the next

sections.

Task Scheduler module, TSC

In total, there are 32 scheduling queues that may be

used for sharing the processing resources of system. (i.e.

field extraction & classification module, RPMs, RISC &

external CPU) in a Weighted Round Robin manner [6].

Each of these queues is associated with one of the

possible internal destinations of packets within PRO3

and a specific handler protocol that will be executed for

the data of this flow. Obviously more than one data

queues will share the same scheduling queue. The

multiplexing of multiple flows in one scheduling queue

(flow group) is based on the Round-Robin (RR)

discipline. Thus, all the flows that hash into the same

scheduling queue will share equally among them the

portion of internal processing resources (in terms of

service opportunities) that is allocated according to the

pre-configured weight for that scheduling queue.

The 32 scheduling queues are hierarchically

organized. The first queue shall be treated with strictly

highest priority over the others (with most prominent use

to schedule traffic with low delay requirements for

processing by the RPMs). The remaining 31 scheduling

queues can either be treated with the same priority level

and be serviced in a Weighted Round Robin (WRR)

fashion or (determined upon configuration) can be

hierarchically organized into two sets of 15 and 16

queues respectively with strict priority of the first set of

queues over the second. Scheduling queues of the same

priority/set are serviced in a WRR fashion.

Traffic Scheduler module, TRS

The outgoing Traffic Scheduler (TRS) orders the cells

(ATM) or packets (IP) to be transmitted to the output

network interface performing a shaping function in terms

of peak-rate policing. Whenever the output data queues

are active the TRS sends commands for transmission

respecting the minimum transmission interval for flows

that are amendable to specific traffic contracts and

service level agreements. The TRS can support these

functions utilizing the same basic data-structures

required for the operation of the TSC and the same

external memory space. Similarly to the TSC case the

flows are grouped into 32 queues (SIDQs) on the basis of

their predefined peak rate transmission. The 32 basic

rates are adequate even in very high-speed link rates [7].

All the flows in the same SIDQ are shaped in the same

peak rate (measured in segments or cells per slot). The

flows within a SIDQ are served in a round robin way and

the cell/packet transmission interval is dynamically

modified as a function of the number of flows with

pending packets existing in the rate queue. TRS

operation is based on the NTT, MTI and AC parameters,

denoting the Next Transmission Time, Minimum

Transmission Interval and number of Active Connections

respectively. The NTT variables are implemented as

countdown timers kept on chip, one per scheduling (rate)

queue, enabled by the general Slot Clock. In ATM based

applications AAL packets leave the system cell by cell.

Each time that a cell from the rate queue i is transmitted

the timer is set to the MTIi/ACi value (since MTI

represent the basic rate for a single flow). In IP

applications, the NTTi is associated with the

transmission of a data segment whose size is predefined.

Each time that an IP packet is waiting to be transmitted,

the timer is set to the value Ti*(PL/PDS), where PL is the

packet length and PDS the size of the predefined data

segment. Thus, 32 discrete rates are supported with

guaranteed peak rate shaping per ATM flow and

aggregate per group peak rate shaping for IP flows.

When a counter reaches zero, a flag rises indicating that

a cell should be transmitted and the timer is reset. To

achieve maximum throughput in the worst case, 32 flags

should be inspected in a slot time and this yields for the

same straightforward implementation of a priority

enforcer as in the case of circular scan of eligible SIDQs

by the TSC circuitry.

5. Performance Evaluation

In this last section we will quantify the performance

enhancements that the innovative architecture of the

PRO3 protocol processor can achieve. Our approach

combine legacy benchmarking metrics for estimating the

performance of programmable micro-engines

(Instructions/Sec-IPS, Instructions/Cycle-IPC, etc.) as

well as the trends of the NP Forum (NPF) [8]. A new

metric introduced by the NPF is the Headroom Concept,

which has been introduced in order to allow the

measurement of the ability of a Network Processing

Platform to perform multiple networking functions

aggregately. Since PRO3 follows a hybrid architecture

with fixed H/W units and programmable engines

designed to operate in pipeline or in parallel we will

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

denote Headroom as the percentage of the available

processing resources of the chip that can be exploited in

parallel. The main processing units that can operate in

parallel are the two RPM units and the central RISC unit.

RPM throughput is determined by the worst-case

performance of each of its pipeline stages and results are

discussed in detail in the sequence. 2,5 Gbps sustained

throughput can be achieved for average case conditions

according to typical IP packet distributions. However

worst-case conditions (continuous stream of 40-Byte IP

packets) deteriorate this performance.

The performance evaluation has been based on the

following facts: the PRO3 chip is implemented using

UMC 0.18 CMOS technology and the clock speed is

200MHz with a 64-bit wide internal bus. For the

performance evaluation of the programmable units

firmware for all the microengines was developed and

open source C code was ported for implementing a

stateful inspection Firewall with Network Address

Translation (NAT) support [5]. Samples of real TCP/IP

traffic have been used as input in H/W simulation and the

processing time in each module was measured. In order

to evaluate the application performance, simulations with

different packet and header lengths were carried out.

Based on the results optimisation of the cores design was

possible. Following the performance of the cores of the

RPM module is investigated. Two parameters were

measured, the total number of the executed instructions

and the corresponding processing time. Based on these

figures, the throughput of each sub-block and of the

whole module was estimated.

Figure 4a displays the total number of instructions

executed by FEX block in the case of 64-byte and 128-

byte packet. For the particular implementation of the

stateful-inspection Firewall application, FEX sub-block is

commissioned to process only the TCP and IP header of

each packet, by extracting the fields mentioned in Table

A. The Data Memory Manager sends to RPM either one

segment, in case the IP packet length is no more than 64-

bytes, or two segments (each 64-bytes) in case the IP

packet is larger than 64 bytes. In this manner, it is

guaranteed that all the relevant fields from IP and TCP

headers will be fetched for processing to the FEX block

of the RPM.

Figure 4. (a) Number of executed instructions
and (b) processing time of FEX micro-engine
versus IP header lengths

Form figure 4a, it is worth noting that the number of

required instructions is independent of the IP packet

length. In addition it may be observed that for small IP

packets (IP packet length between 40 and 64 bytes) the

number of required instructions is proportional to the IP

header length, which depends on the number of valid IP

options. Additionally, for IP packets that are larger than

64 bytes, a fixed number of instructions are required for

the cases where the IP header length is between 20 and

48 bytes, while for the rest of the IP header length cases,

this number increases proportionally to the IP header

length, reaching a maximum of 43 instructions in case of

an IP-packet with 60 byte of IP options.

The average cycle-to-instruction ratio for the FEX

micro engine is 1.6. Although this value can be improved

by reducing the most clock-consuming instructions,

however since the processing does not depend on the

total IP packet length, no major improvement is

anticipated. Finally, from Figure 4a it can be seen that

the total number of instructions for two segments (IP

packet length larger that 64 bytes) is smaller than that for

one segment (IP packet length between 40 and 64 bytes).

This is due to the fact that the firmware easily identifies

the case of two segments and, based on the IP header

lengths (resides in first segment), scans faster and jumps

directly to the fields to be extracted, which reside in the

second segment. The corresponding processing time of

FEX micro-engine is displayed in Figure 4b. From this

figure it can be seen that the cycle budget of the FEX

micro-engine for 40-byte packets is close to 4

Mpackets/sec (Mpps). This throughput can be doubled

when the traffic is balanced between the two RPM

modules and sustain in this way OC-48 rate even for

TCP/IP traffic of 40-byte packet length.

Filed Modifier also receives the same number of

segments as FEX –one or two 64-byte segments–

depending on the total packet size –, which are stored in

the bypass FIFO. However in Field Modifier, the total

process time, depends on the IP header length and the

number of valid bytes that reside within the segments

(one or two) stored in the bypass FIFO. To this end,

optimization was possible yielding significant improve in

FMO sub-block performance. For example, the average

cycle-to-instruction ratio was 2.2 and after the

optimization was decreased down to 1.7. That was

attainable after detecting, which firmware routines are

most often called, which are the most clock-consuming

ones and which can be executed in parallel.

After the optimization, a significant decrease in the

number of executed instructions was achieved, almost

60%, resulting in shorter processing times and in an

improved of the instruction-to-clock ratio. Figure 5

displays the total number of the executed instructions of

the optimized Field Modifier versus the total IP packet

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

length for different IP header lengths. From Figure 5 we

may observe that for packets having the same IP header

length (same number of valid IP option) the total number

of FMO instructions required for NAT is, as expected,

proportional to the IP packet length. Additionally, for IP

packets that have the same length the number of

instructions is inverse proportional to the IP header

length (number of valid IP options). This is due to the

fact that, when more IP options are present the less jump

instructions the micro-engine needs to scan the contents

of the packet.

Figure 5. Number of executed instructions in
Field Modifier for different packet/header
lengths

Finally, Figure 6 displays the total processing time

versus the IP segment length. From Figure 6 it can be

derived that a single Field Modifier module can sustain

about 4 Mpps traffic assuming packets of 40-byte. When

both the RPM modules are used then the throughput is

double to 8 Mpps, which exceeds the maximum 7.5Mpps

for 40-byte packets for OC-48 line rate.

Figure 6. FMO Processing time versus packet
length for different IP header lengths

Concerning the third complex sub-block of RPM

module, the Modified Hyperstone RISC, its throughput

depends heavily on the custom running application and it

is estimated, that for complex applications, like TCP

state updating, less than 170 instructions are needed and

this of course has an impact in the overall throughput.

However, for complex scenarios this is a trade off that

any network processor faces. Based on our analysis, by

using two RPM modules and balancing the load between

them (supported by the Internal Scheduler design) 4

Mpps can be sustained at worst case, with only TCP

traffic. For the average IP packet (about 128 bytes) this

rate exceeds the OC-48 rate of 2,5 Gbps. It is worth

noting that packet classification, queuing and scheduling

can support 2,5Gbps link rates even for worst case

minimum packets.

6. Conclusions

In this paper the Programmable Protocol Processor

architecture was presented with emphasis in the

acceleration of packet processing using an innovative

concept of a 3-staged pipelined processing operation and

certain scheduling implementation in order to balance

workload and resolve internal contention. Such a design

is suitable for protocol processing in high-speed

networks.

This work was performed in the framework of the

PRO3 project, which is partially funded by the IST

Program of the European Community. The authors would

like to acknowledge the contributions of their colleagues

from Lucent Technologies, Hyperstone AG, IMEC,

National Technical University of Athens, Ellemedia

Technologies, Technical University of Crete and

InAccess Networks.

7. References

[1] T. Wolf, J. Turner, “Design Issues for high-performance

Active Routers”, IEEE Journal on Selected Areas in

Communications, Vol. 19, pp. 404-409, March 2001.

[2] G. Konstantoulakis, et al. “A Novel Architecture for

Efficient Protocol Processing in High Speed Communication

Environments”, in proc. of ECUMN’2000, Colmar, France,

October 2000.

[3] Hyperstone AG, E1-32X RISC/DSP, www.hyperstone.com

[4] A. Nikologiannis, M. Katevenis, “Efficient Per-Flow

Queueing in DRAM at OC-192 Line Rate using Out-of-Order

Execution Techniques”, in proc. of ICC2001, Helsinki,

Finland, June 2001.

[5] N. Nikolaou, J. Sanchez, T. Orphanoudakis, D. Polatos N.

Zervos, “Application Decomposition for High-Speed Network

Processing Platforms”, 2nd European Conference on Universal

Multiservice Networks, ECUMN’2002 April 2000, Colmar

France.

[6] M. Katevenis, S. Sidiropoulos, C. Courcoubetis, “Weighted

Round Robin Cell multiplexing in a general-purpose ATM

switch chip”, IEEE Journal on Selected Areas in

Communications, Vol. 9, No 8, October 1991.

[7] M. Shreedhar, G. Varghese, “Efficient Fair Queuing using

Deficit Round Robin”, IEEE Transactions on Networking,

Vol.4, No 3, June 1996.

[8] P.R. Chandra and S.Y. Lim, “Framework for Benchmarking

Network Processors, Draft 1.0, Network Processing Forum,

August 2002.

Proceedings of the 16th International Conference on VLSI Design (VLSI’03)
1063-9667/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

