
FIO 23(4) #18703

Fiber and Integrated Optics, 23:263–274, 2004
Copyright © Taylor & Francis Inc.
ISSN: 0146-8030 print/1096-4681 online
DOI: 10.1080/01468030490459980

SOA-Based Multi-Wavelength Laser Sources

N. PLEROS
T. HOUBAVLIS
G. THEOPHILOPOULOS
K. VLACHOS
C. BINTJAS
H. AVRAMOPOULOS

Photonics Communication Research Laboratory
Department of Electrical and Computer Engineering
National Technical University of Athens
Athens, Greece

We present recent advances in multi-wavelength, power-equalized laser sources that
incorporate a semiconductor optical amplifier (SOA) and simple optical filters, such
as Lyot-type and Fabry-Perot, for comb generation. Both linear and ring-cavity con-
figurations are presented, and single-pass optical feedback technique is proposed to
improve the performance in terms of the number of simultaneously oscillating lines
and output channel power equalization. This technique resulted in a broadened os-
cillating spectrum of 52 lines spaced at 50 GHz, power-equalized within 0.3 dB.
Finally, a simplified version that uses only an uncoated SOA for both gain and comb
generation is demonstrated.
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Introduction

Wavelength division multiplexing (WDM) technology is now well established, and trans-
mission and network systems are being deployed rapidly worldwide. As the channel
count continues to increase across the spectrum from S- to L-band, so has the interest
in laser sources that can provide simultaneous, multi-wavelength operation. Applications
for such sources include use in WDM transmitters or passive and active component char-
acterization and may be used instead of an equivalent number of discrete laser sources
or tunable laser sources to reduce cost, electronic driver real estate, or the complex-
ity in measurement procedures. For example, multi-wavelength laser sources are ideal
for the characterization of optical amplifiers where the gain profile must be saturated
across its whole spectrum for reliable measurements, or polarization mode dispersion
and polarization-dependent loss measurements that are usually carried out with tunable
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sources. Multi-wavelength operation has been demonstrated using a number of techniques
including spectrum slicing in LEDs [1], amplified spontaneous emission from EDFAs [2],
supercontinuum generation in fiber [3], femtosecond pulses [4], as well as in EDF oscil-
lators that use an intracavity grating [5], a fiber Lyot filter [6], and a fiber grating Sagnac
loop [7]. Recently, multi-wavelength operation was also shown in semiconductor optical
amplifier (SOA) cavities [8–14].

This article presents a study of different implementations of multi-wavelength laser
sources with power-equalized output, which use a combination of SOAs and different
filtering approaches for the comb generation. We show that with a regular single SOA
linear cavity that employs a polarization maintaining (PM) fiber-based Lyot-type filter it is
possible to obtain simultaneous 23-line oscillation at 100 GHz nominal spacing across an
18-nm spectral window, with less than 3 dB power variation between them [14]. Improved
performance is achieved in a regular ring cavity that includes two SOAs and makes use
of a fiber Fabry-Perot filter (FPF) to obtain simultaneous 38-line oscillation spaced at
50 GHz across a 15-nm spectral window, with less than 0.5 dB power variation between
them [11]. In order to extend the power-equalized oscillating spectrum, we further propose
and demonstrate a simple technique that relies on the addition of one-pass feedback arm
in the output of the source. In that way, the spectral oscillating window is broadened
to 21 nm, resulting in 52 channels spaced at 50 GHz [10, 11]. In this configuration the
line width is 500 MHz, the power variation across the 52 lines is less than 0.3 dB, the
extinction between them is better than 32 dB, and the total power is 1.7 mW. Finally,
we also propose and demonstrate a simplified version of this type of laser source that
employs only an uncoated SOA in a ring cavity, in order to reduce their complexity and
cost. This source is capable of generating 29 simultaneously oscillating lines spaced at
65 GHz, across a 15-nm spectral window, with less than 1.5 dB power variations.

Principle of Operation

Multi-wavelength oscillation in a laser source that uses an SOA [8–14] is possible because
of its broad gain spectrum and heterogeneous spectral broadening. This can be easily
achieved by incorporating an optical filter with periodic spectral transfer function in the
laser cavity that acts as a comb generator. In this case, the oscillating wavelength spacing
is determined by the free spectral range (FSR) of the filter. If the laser cavity employs
a single SOA that has polarization gain dependence, oscillation occurs at slightly longer
wavelengths for the high gain axis as opposed to its low gain axis. By coupling the
signal to both gain axes it is therefore possible to extend the oscillating bandwidth,
resulting in the increase of the number of discrete channels. For enhanced performance,
both the transmission bandwidth around each peak resonance of the filter and the cavity
losses must be kept as small as possible in order to achieve narrow line width and large
extinction ratio between the channels. Moreover, the decrease of the cavity losses results
in increased laser output power.

Linear Cavity Laser Using a Fiber Lyot-Type Filter

Experiment

The polarization maintaining (PM) fiber Lyot filter is a simple structure that mainly con-
sists of a length L of PM fiber, placed between polarizers aligned at 45◦ with respect to
the bi-refringent axes of the PM fiber, as shown in Figure 1. Due to the different propa-
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Figure 1. The Lyot-type filter.

Figure 2. Experimental layout of the linear cavity laser source.

gation constants of the two axes of the bi-refringent fiber, a squared cosinusoidal filtering
function is imposed on light traveling through the structure, whose FSR is determined
by the length and the bi-refringence of the PM fiber [15]. The single-pass transmission
function through the filter is given by:

T = 1

4
|e−jβxL + e−jβyL|2 = cos2

[
(βx − βy) · L

2

]

where βx and βy are the propagation constants through the axes of the PM fiber, and the
free spectral range of the filter is given by:

δλFSR = B · λ

L

where B is the beat length of the PM fiber.
In order to build a laser source capable of providing multi-wavelength oscillation,

the Lyot-type filter and a gain medium have to be incorporated into the laser cavity. Such
a filter is attractive for wavelength comb generation since it exhibits very low losses, it
can be tuned easily and precisely to the comb spacing, and it is very simple to build. In
this case, the rather low nominal finesse of the filter with a value of 2 may be effectively
enhanced to a value of 3.2 by double pass in a linear cavity configuration.

Figure 2 shows the experimental setup of the multi-wavelength source, revealing
a linear cavity formed between two dielectrically coated mirrors of 99% reflectivity.
Gain was provided from a commercially available SOA (Opto Speed SA), which was
a 500-µm, bulk InGaAsP/InP ridge waveguide, with antireflection-coated facets angled
at 10◦. The device has a small signal gain of 23 dB at 1535 nm and polarization gain
dependence between its TE and TM axes of 2 dB when driven with 250 mA dc current.
Polarization controllers were used on the output ports of the SOA to adjust the polarization
of the lasing signal. The Lyot filter used in this experiment was built from 5.77 m of
commercially available PM fiber with 3 mm beat length, resulting in an FSR of 100 GHz.
Output from the source was obtained with a 5:95 fused fiber coupler.
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Figure 3. Optical output spectrum of the linear laser cavity.

Results

By proper adjustment of the polarization inside the cavity, the source displays multi-
wavelength oscillation when the SOA is driven at maximum dc current. Figure 3 displays
the optical spectrum at the output of the source and reveals simultaneous oscillation of
23 discrete channels spaced at 100 GHz with less than 3 dB power variation between them
and 17 dB extinction. The FWHM of each oscillating wavelength was measured with an
optical spectrum analyzer and was found to be 0.16 nm, determined by the resolution
limit of the instrument. In order to improve on the accuracy of the measurement, the line
width was also measured using a high finesse fiber FPF at the output and was found to
be 12.5 GHz. The total output power of the multi-wavelength source was 42 µW.

Figure 4 shows additional results on the output power and the stability of the proposed
laser source. More specifically, Figure 4(a) illustrates the output power distribution across
the 23 most intense lines and indicates that each channel power has a mean value of 2 µW.

The stability of the multi-wavelength laser was also tested. Due to the relatively
short cavity and strong polarizing properties of the cavity, the output remains stable for
hours in laboratory conditions. Figure 4(b) shows the 3-D temporal evolution of three
lines from the output of the laser. The figure is plotted on a linear scale over a 90 minute
timespan and displays the good stability of the source.

Ring-Cavity Laser Using Two SOAs and a Fabry-Perot Filter

Experiment and Results

In order to improve the performance of the multi-wavelength source in terms of the num-
ber of oscillating lines, output power, line width and extinction ratio, we have modified
the laser cavity from a linear to a ring configuration and incorporated two SOAs and a
fiber FPF for comb generation. The addition of a second SOA, with a peak gain slightly
different from the first, increases the oscillating bandwidth and the output power, while
the use of the FPF allows for free selection of the finesse. In this way, by using a higher
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Figure 4. (a) Optical power distribution of output wavelengths and (b) output time evolution over
90 min.

finesse filter, we can effectively reduce the line width and improve the extinction ratio
of the channels. It should be noted that, in the case of the Lyot-type filter, the finesse
value is constant due to its cosinusoidal transfer function. Moreover, the use of the FPF
imposes the design of a ring-cavity configuration that allows for unidirectional oscillation
in order to avoid undesirable reflections from the etalon. Optimization of the cavity losses
and adjustment of the drive currents for the two SOAs can result in a broad, uniform
oscillating spectrum.

Figure 5 shows the experimental layout of the cavity that was used. Gain was pro-
vided by two bulk, 500-µm long, commercially available (Opto Speed, S.A.), InGaAsP/
InP ridge waveguide SOAs, with antireflection-coated facets angled at 10◦. SOA 1 pro-
vided a peak small signal gain of 22 dB at 1530 nm with 1.5 dB polarization dependence
when driven with 250 mA dc current. SOA 2 provided a peak small signal gain of 23 dB
at 1522 nm with 1.9 dB polarization dependence when driven with a 250 mA dc current.
Polarization controllers were used before the SOAs to adjust the input state of polariza-
tion, and isolators were used to ensure unidirectional oscillation in the ring and to avoid
undesirable reflections. The oscillating spectrum was defined by a fiber Fabry-Perot (FFP)
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Figure 5. Experimental setup of the ring laser source and inset showing the feedback arm.

Figure 6. Optical output spectrum at (a) sweep width 5 nm/div, (b) sweep width 2 nm/div, and
(c) power distribution of output wavelengths.

filter with free spectral range 47.75 GHz, finesse 8.1, and 1.7 dB insertion loss. A 50:50
fused fiber coupler provided the output from the source.

With the drive currents adjusted for SOA 1 at 207 mA (20 dB small signal gain at
1532 nm) and at 229 mA for SOA 2 (22 dB small signal gain at 1524 nm), the source
oscillates across a broad spectral range shown in Figure 6(a) and (b). The 38 central
lines span across 15 nm and provide nearly equal power with a mean of 127 æW and
less than 0.5 dB standard deviation, shown in Figure 6(c). The total output power from
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the source was 5.5 mW. The line width of the oscillating lines was below the 0.16 nm
resolution limit of our optical spectrum analyzer and for this reason it was deduced by
measuring the beat spectrum of the cavity modes on an RF spectrum analyzer. Assuming
a Lorentzian line shape, the line width was found to be 500 MHz. The extinction between
the lines was measured after amplification in an EDFA using a second fiber Fabry-Perot
filter (5.2 GHz bandwidth) and was found to be 32 dB. It is expected that the extinction
obtained directly from the source will be significantly better than this value.

It is worth noting that multi-wavelength operation may be obtained with a single
SOA, too. For example, if only SOA 2 is used in the cavity, a flat oscillating spectrum
of 10 nm is obtained with 25 simultaneously oscillating lines.

Source with Single-Pass Feedback

In order to extend the power-equalized oscillating spectrum, single-pass optical feedback
was employed with the setup shown in the inset of Figure 5. With this arrangement part
of the output signal obtained through the 50:50 coupler is returned back to the laser via
a Faraday rotator mirror (FRM) and a 70:30 coupler, while a variable optical attenuator
(VOA) is used to adjust its optical power into the oscillator. The feedback signal travels
in the backward direction through SOA 2 only once and is stopped by the isolators.

The oscillating signal experiences more losses in traveling from SOA 2 to SOA 1
than from SOA 1 to SOA 2 and to obtain a wide oscillating spectrum SOA 1 must be
driven at a lower current than SOA 2. SOA 2 is deeply saturated, and without feedback
the oscillating spectral profile is strongly featured, especially when attempting to couple
to both TE and TM axes in order to broaden the spectrum. If an appropriate level of
this featured spectral profile is used as saturating signal in the opposite direction to the
lasing signal, equalization of the power of the oscillating wavelengths can be achieved.
Essentially, the more intense lines saturate the SOA more, causing a uniform distribution
of the gain across wavelength. Optimization of the cavity losses, the power of the feedback
signal, the currents driving the SOAs, and the polarization controllers in the cavity results
in a broad and equalized spectrum. Use of the FRM is beneficial because it ensures that
the feedback signal is orthogonal to the oscillating signal and simplifies the polarization
adjustments.

Figure 7 shows the oscillating spectra of the laser source with the drive currents for
SOA 1 and SOA 2 adjusted at 182 mA and 215 mA, respectively.

Figure 7(a) displays the output in the absence of the feedback and shows a broad,
but highly featured, profile. With the injection of 235 µW of signal into SOA 2 from
the feedback arm, the power spectrum equalizes and broadens to nearly 21 nm so that
it consists of 52 oscillating wavelengths as seen in Figure 7(b). Figure 7(c) shows in
more detail 49 of these 52 oscillating wavelengths, and Figure 7(d) shows their power
distribution that has a mean of 33 µW and standard deviation of 0.3 dB. The total output
power was 1.7 mW. The performance of the source does not depend critically on the
current or feedback power values. For example, with current changes of up to 10 mA
on either SOA, or variations in the feedback of up to 30 µW, there is no change in the
number of oscillating lines, but there is a small increase to 0.6 dB in the power variation
across the 52 lines. The line width was found to be 500 MHz and the extinction between
the lines after amplification was better than 32 dB. These figures may be improved if
a narrower Fabry-Perot filter is used. The polarization state of the oscillating lines was
examined in a polarization state analyzer (Instruments Systems, model RPA 2000-125).
All wavelengths showed greater than 97% degree of polarization and were nearly linearly
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Figure 7. Optical output spectrum: (a) without and (b) with optical feedback (sweep width 5 nm/div);
(c) with optical feedback (sweep width 2 nm/div), and (d) power distribution of output wavelengths
with feedback.

Figure 8. Output time evolution over 90 min.

polarized, even though not in the same plane. The stability of the multi-wavelength laser
was also tested. Due to the relatively short cavity, the output remains stable for hours in
laboratory conditions. Figure 8 shows the 3-D temporal evolution of five lines from the
profile. The figure is plotted linearly, covers a 90-min time span, and displays the good
stability characteristics of the source.

The feedback technique has even more pronounced effects for a cavity with a single
SOA, in which case a flat oscillating spectrum of 50 simultaneously oscillating lines
across 20 nm can be achieved. This should be compared to the performance of the same
oscillator operating without feedback that can only sustain oscillation of flat lines across
10 nm.
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Figure 9. Experimental setup of the uncoated SOA-based ring laser source.

Figure 10. Oscillating optical spectrum (a) at the output of the uncoated-SOA and (b) at the output
of the ring laser configuration.

Ring-Cavity Laser Using a Non-anti-reflection–Coated SOA

In order to reduce the cost and complexity of the previously described scheme, a single
uncoated SOA can be used to simultaneously provide both gain and comb filtering func-
tion in the cavity. Figure 9 shows the relatively simple experimental setup used. Gain
was provided by a bulk, 500 µm long, InGaAsP/InP ridge waveguide SOA (OptoSpeed,
S.A.) with facets tilted at 10◦ and no anti-reflection (AR) coatings. The reflectance of the
uncoated facets was calculated to be about 0.3. A polarization controller was incorporated
to adjust polarization state and an isolator to ensure unidirectional oscillation in the ring
cavity. Output was obtained via a 50:50 fused fiber coupler.

The oscillating spectrum was defined by the Fabry-Perot modes of the uncoated
SOA, whose FSR was 65 GHz. Multi-wavelength operation is possible even by using the
reflection-coated SOA alone considered as a linear, 500 µm long cavity, providing lasing
lines determined by the Fabry-Perot modes that experience the highest gain. However,
due to gain compression caused by the extreme low cavity losses, its performance as a
multi-wavelength source is rather poor. Figure 10(a) depicts the oscillating spectrum of
this configuration that consists of only 4 lasing lines within a 3 dB power variation when
the SOA is driven at 250 mA dc current.

On the contrary, multi-wavelength operation in a ring laser configuration is signifi-
cantly improved due to strong optical feedback that forces carriers to deplete the heavily
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saturated energy levels and occupy the less saturated, shifting the oscillating spectrum
to longer wavelengths. Further bandwidth broadening is obtained by coupling the lasing
signal in both polarization axes of the semiconductor. Figure 10(b) illustrates the obtained
oscillating spectrum using the ring laser configuration with the SOA driven at 250 mA.
The lasing window is broadened by a factor of 7 consisting of 29 oscillating lines with a
power variation of less than 1.5 dB, across a spectral window of 15 nm. The total output
power of the source was found to be 2 mW.

For measuring the line width and the extinction ratio of the oscillating lines, a 1.5-mm
SOA and a fiber FPF with a bandwidth of 5.2 GHz were used at the output of the ring
laser to amplify the output signal and to isolate each channel, respectively. In this way,
the line width was again determined by measuring the beat spectrum of the cavity modes
on an RF spectrum analyzer and was found to be 160 MHz, assuming a Lorentzian line
shape. The extinction between the lines was found to be 29 dB, but it is expected to be
significantly better if obtained directly at the output of the laser source.

Conclusion

In summary, we have presented a study for the demonstration of multi-wavelength, power-
equalized laser sources that use SOAs combined with comb generating filters in different
cavity configurations. We have shown that in a regular linear cavity that includes an
SOA and a fiber Lyot filter it is possible to obtain simultaneous 23-line oscillation at
100 GHz nominal line spacing, with less than 3 dB power variation, whereas a ring-cavity
configuration with two SOAs and a fiber FPF provided 38 channels spaced at 50 GHz
and power equalized within 0.5 dB. We have further proposed and demonstrated a simple
technique for extending the power-equalized oscillating spectrum that relies on single-
pass feedback of the output signal into the source. With this technique it was possible to
extend the oscillating window to 21 nm and allow the simultaneous oscillation of 52 lines,
with 500 MHz line width, power variation of less than 0.3 dB across the oscillating lines,
and better than 32 dB extinction between them. Finally, we have presented a simplified
version of these sources by incorporating an uncoated SOA into a ring cavity, avoiding
in that way the additional use of a comb filtering element. This source has been shown
to provide 29 simultaneously oscillating wavelengths spaced at 65 GHz with power
variation less than 1.5 dB. The specific source is relatively simple and, in principle, can
be integrated into a PLC platform. All the sources demonstrated here remained stable
for hours in laboratory conditions and may be useful for component characterization and
WDM networking applications.
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