
IEEE COMMUNICATIONS LETTERS, VOL. 8, NO. 3, MARCH 2004 183

Packet Processing Acceleration With a 3-Stage
Programmable Pipeline Engine

I. Papaefstathiou, K. Vlachos, N. Nikolaou, N. Zervos, and V. B. Lawrence, Member, IEEE

Abstract—In this letter, we present the architecture and imple-
mentation of a novel, 3-stage processing engine, suitable for deep
packet processing in high-speed networks. The engine, which has
been fabricated as part of a network processor, comprises of a typ-
ical RISC core and programmable hardware. To assess the perfor-
mance of the engine, experiments with packets of various lengths
have been performed and compared against the IXP1200 network
processor. The comparison has revealed that for the case study
shown in this letter, the proposed packet-processing engine is up
to three times faster. Moreover, the engine is simple to be fabri-
cated, less expensive than the corresponding hardware cores of
IXP1200 and can be easily programmed for different networking
applications.

Index Terms—ASIC, Network Processor, Special Purpose
Processor.

I. INTRODUCTION

WITH the rapid growth of Internet traffic and the
increasing line rates, the execution of the various

networking tasks is increasingly considered to be the main
bottleneck for communications. To meet the stringent pro-
cessing demands, designers are faced with two alternatives:
either create a custom hardware solution (ASIC) or use a
special purpose processor, called network processor (NP).
The ASIC approach can achieve the desired speeds, but it is
inflexible, since changes in the functionality are very limited
or not permitted at all. However, since protocols continue to
evolve, accommodating new features that comply with the
latest standards is of significant importance. To this respect,
NPs can provide the required flexibility and programmability.

In this letter, we present a flexible and programmable engine
that can sustain wire speed protocol processing, even for
complex and high demanding networking tasks. The design
can be easily embedded in any networking environment (i.e.,
both ASICs and NPs). It combines a typical RISC core [1]
with custom-made, fully programmable hardware in a 3-stage
pipeline module. In this way, the efficiency of a typical CPU
is enhanced by providing the means to tailor its circuits for
special tasks and, reversely, the application diversity of highly
optimized hardware is significantly broadened. Using this
engine, that incorporates a low cost and simple general purpose

Manuscript received June 11, 2003. The associate editor coordinating the re-
view of this letter and approving it for publication was Prof. K. Park.

I. Papaefstathiou, N. Nikolaou, and N. Zervos are with Ellemedia Technolo-
gies, Athens GR17121, Greece (e-mail: yanni@ellemedia.com; nikolaou@
ellemedia.com; nzervos@ellemedia.com).

K. Vlachos was with Bell Laboratories Advance Technology EMEA, Lucent
Technologies, 1200BD Hilversum, The Netherlands.

V. B. Lawrence is with Bell Labs, Lucent Technologies, Holmdel, NJ 07733
USA (e-mail: vbl@lucent.com).

Digital Object Identifier 10.1109/LCOMM.2004.823427

Fig. 1. Programmable processing functional model and block diagram.

RISC, at 200 MHz, we were able to sustain stateful inspection
firewall processing and Network Address Translation (NAT)
for 2.5 Gb/s TCP/IP traffic.

II. THE PROGRAMMABLE PROCESSING ENGINE—PPE

The Programmable Processing Engine (PPE) (see Fig. 1) is a
3-stage pipeline module, consisting of three logical sub-units:
a Field Extractor (FEX) unit, a typical RISC core and a Field
Modification unit (FMO). More particularly, programmable
hardware is commissioned to extract fields from incoming
packets and feed them to the processing core. After the fields’
processing in the RISC core, FMO updates, in a programmable
manner, specific fields of the packet. Additionally, an I/O data
controller is used to relieve the processing core from I/O duties
and free available resources for real processing.

The Field Extraction operation is controlled by microcode,
stored in an internal SRAM. The instruction set comprises of
simple and generic instructions that operate over data stored
in a FIFO of 32-bit words. The FEX instruction set supports
the following operations: 1) variable length (1 to 32 bits) field
extraction; 2) backward/forward movement in the data FIFO;
3) conditional jumps; and 4) addition. FEX instructions are flex-
ible enough to allow conditional branches based on the content
of extracted filed (e.g., protocol field of the IP header), as well as
parsing of protocol headers based on header and packet length
information (e.g., FEX can be easily programmed to recognize
and extract or skip IP and TCP options). The execution time of
the field extraction operation is constant and does not depend on
the number of extracted bits (only on the number of the fields
extracted).

Packet processing is initiated by a packet arrival at the FEX
input interface. After the field extraction, the I/O Data Con-
troller places the extracted fields directly to the register file of
the RISC core. In this way the RISC performance is significantly
enhanced, as I/O operations are performed in parallel with the

1089-7798/04$20.00 © 2004 IEEE

184 IEEE COMMUNICATIONS LETTERS, VOL. 8, NO. 3, MARCH 2004

processing of the previous packet. When the RISC processing
ends, the I/O controller hands over the processed fields from
the core, as well as a set of commands to FMO. The operations
of FMO, which is also controlled by microcode, include field
extraction and field modification. The FMO’s instruction set is
very similar to the FEX’s one.

In general, the FMO can be used to modify a packet or create
a new packet (using a packet template that is hard-coded in the
firmware, plus new fields received from the RISC core). Addi-
tionally, if the firmware is large enough it can generate a large
number of new packets.

Another important component of the PPE design is the Packet
Delay FIFO (see Fig. 1). The received data (packet or part of a
packet) are temporarily stored in the Delay FIFO waiting for
fields/packet processing results. When the FMO receives the
results (new fields and commands) from the Data Controller,
then depending on the processing result and the application, it
may modify or delete the packet/part of packet in the FIFO, or
construct a new one, under the control of the firmware.

Regarding the state-of-the-art in network processing units,
the approach followed by the majority of the communication
systems’ manufacturers (e.g., in Agere’s PayloadPlus [3],
IBM’s PowerNP [4], Intel’s IXP 1200 [6], Motorola’s C-5
[2]), is mainly a brute force, where a large number of general
purpose RISC engines are plugged together. Those engines are
connected via either point-to-point links (IXP, PayloadPlus)
or shared high bandwidth common buses, or centralized
network topologies (PowerNP, C-5). There are also simple,
dedicated, hardware units for performing certain complex tasks
in hardware. However, the processing units have no special
hardware for optimizing the data transfers between them, or
certain instructions that increase the speed of the network data
processing (except of the PowerNP, which has a unit similar
to our FEX but it does not have any units with the FMO
functionality).

The main feature that differentiates our approach from
that used in the abovementioned Network Processors and
contributes to the higher cost-performance effectiveness of the
PPE, is the highly sophisticated interconnection mechanism of
the RISC with the FEX and the FMO. In particular, the register
file of the RISC is divided into two parts, and while the core
processes the data on one part, the Data Controller (specialized
hardware) writes or reads new fields, coming from the FEX or
going to the PPE, to and from the other part of the register file.
In this way, the data processing can take place in parallel with
the data movements. Therefore, the RISC is not stalled at any
time, whereas the processing units in the existing NPs should
perform the data movements themselves.

Similarly, the cache of the RISC has an external port, and
therefore the state of the network flows is written to it without
the need of any RISC command. The RISC processes the data
directly from its cache and writes the updated state back to
it. The architecture of both the FEX and the FMO allows op-
timal field processing and modification. Therefore, these en-
gines need fewer commands than the general purpose RISC en-
gines used in other NPs in order to perform the same tasks.
IBM’s power NP is the only one which seems to follow a similar
approach by having special processing units for field extraction,
but its performance as shown in [4] seems to be lower than that
of the PPE (demonstrated in Section III).

Both FEX and FMO have an extremely low hardware com-
plexity, since they have been designed for only field extrac-
tion/insertion and modification. The gate count of the two en-
gines (about 50 K) is similar to an implementation of a very
simple 16-bit microcontroller (such as in [7]), when at the same
time, in the network applications, they are more effective than
many 32-bits general purpose CPUs.

III. PERFORMANCE EVALUATION

The performance evaluation of the PPE has been based
on the following facts: implementation using UMC 0.18
CMOS technology, 200-MHz clock speed, and 64-bit-wide
input/output interface. Real TCP/IP traffic has been used as
input and the number of executed instructions of each block
was measured. However, overall performance depends heavily
on the instructions executed on the RISC core, which in turns
depends on the application. In our case study, a TCP stateful
inspection with NAT was used [5]. Fig. 2(a) displays the fields
that are extracted and are fetched for processing to the core,
via the I/O data controller, while Fig. 2(b) and (c) displays the
number of executed instructions for the FEX and FMO engines,
respectively.

In the case of FEX, from Fig. 2(b), we can observe that for
small IP packets (up to 64 bytes) the number of required instruc-
tions is proportional to the IP header, which depends on the IP
options length. Additionally, for IP packets larger than 64 bytes,
a fixed number of instructions are required for the cases where
the IP header length is between 20 and 48 bytes, while for the
rest of the IP header length cases, this number increases pro-
portionally to the IP header length, reaching a maximum of 43
instructions in case of an IP-packet with a 60-byte IP header. On
the contrary in the case of FMO, the number of required instruc-
tions grows linearly with the IP header length. This is because,
in the case of header field modification, the header data are se-
quentially scanned in order to reinsert the updated fields in the
correct slots. Fig. 2(c) displays the case of field modification for
small IP packets (left column), as well as for large packets (right
column).

Table I demonstrates the performance of the whole PPE en-
gine when executes a TCP stateful inspection application with
NAT support. The PPE performance is compared with that of
the Intel IXP1200 [6]. In order to perform the comparison, we
have ported our application to the IXP1200 and we have used
three of its microengines; executing the FEX, the FMO and the
RISC program, respectively. This organization proved to be the
optimal one for the IXP due to the fact that the processing was
almost perfectly balanced between the three microengines. This
was possible because the FEX, FMO and PPE programs have all
a similar complexity. Additionally, because all the data needed
were in the IXP’s local scratch memory and there were no long
time periods that the microengines were stalled due to external
accesses, the multithreading commands of the IXP could not in-
crease the processing bandwidth. Moreover, plugging the same
programs to more microengines proved to decrease the perfor-
mance of the system since the data transfers needed between the
microengines imposed a significant processing overhead. The
instruction count numbers for the IXP1200 where produced by

PAPAEFSTATHIOU et al.: PACKET PROCESSING ACCELERATION WITH A 3-STAGE PROGRAMMABLE PIPELINE ENGINE 185

Fig. 2. Fields extracted by FEX and number of instructions and processing time for the FEX/FMO.

TABLE I
MEAN INSTRUCTION COUNT & LATENCY FOR PPE/IXP1200

applying the highest compiler optimizations for code density
and handcrafted the produced code, so as to further increase the
performance. Those results of Table I clearly demonstrate that
in such applications the PPE is up to 2.5 times faster (and at
least 50% more efficient) than the IXP1200, even though the
IXP1200 runs at 233 MHz. It must be noted that in the IXP1200
case we used up to five microengines (when processing both a
UDP and a TCP packet at the same time) and even in this case
the performance of the PPE is extremely higher. Additionally,
the FEX and FMOs implementations are much smaller than the
corresponding microengines.

In general, we believe that the PPE, due to its unique
features, can do the protocol processing at a much higher
rate than the corresponding cores found in the current NPs
(including the IXP1200) since the latter have barely no special
hardware for data transfers or special commands for data
extraction/modification. Moreover, our PPE has a much lower
hardware complexity, (for example, five times less hardware
is needed for the PPE implementation than the Motorolla’s
corresponding 3-channel processors [2]), making it much more
cost-effective for state-of-the-art NPs or networking ASICs.

IV. CONCLUSION

In this letter, the architecture of the PPE was presented and
its performance has been assessed when executing a stateful in-
spection with NAT support. The PPE uses an innovative concept
of a 3-stage pipelined module, integrating a RISC core with spe-
cial purpose programmable hardware on the same processing
platform. In this way, the advantages of a general purpose CPU
are combined with those of special purpose (networking) pro-
cessing cores, in the most efficient manner. The demonstrated
results verify that the PPE is significantly efficient in such an ap-
plication. The design is suitable for both cell and packet based
network-processing applications and can be embedded in any
processing environment. The PPE has been fabricated within
a highly sophisticated network processor at UMC’s 0.18 m
logic process, occupying about 9.2 mm of area (of which about
6.5 mm are covered by the RISC core and its associated mem-
ories) and working at 200 MHz.

REFERENCES

[1] Hyperstone Electronics E1-32X RISC/DSP [Online]. Available:
http://www.hyperstone.com

[2] (2002, June) C-5 Data Sheet. Motorola. [Online] http://www.motorola.
com

[3] (2003) Agere Systems, Advanced Payload Plus Data Sheet. [Online]
http://www.agere.com

[4] R. Allen et al., “IBM powerNP hardware software and applications,”
IBM J. Res. Develop., vol. 47, no. 2/3, pp. 177–194, Mar./May 2003.

[5] G. Rooij, “Real stateful TCP packet filtering in IP filter,” presented at the
2nd Int. SANE Conf., Maastricht, The Netherlands, May 22–25, 2000.

[6] M. Adiletta et al., “The next generation of Intel IXP Network proces-
sors,” Intel Technol. J., vol. 6, no. 3, Aug. 2002.

[7] B. Finch and W. Miller, “A new reference design development environ-
ment for JPEG 2000 applications,” presented at the System-on-Chip and
ASIC Design Conf., Jan. 2003.

