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A TCP-Specific Traffic Profiling and
Prediction Scheme for Performance

Optimization in OBS Networks
Kostas Ramantas and Kyriakos Vlachos

Abstract—The efficient transmission of TCP traffic over
optical burst-switched (OBS) networks is a challenging
problem, due to the high sensitivity of the TCP congestion
control mechanism to losses. In this paper, a TCP-specific
traffic profiling and traffic prediction scheme is proposed,
for optimizing TCP transmission over one-way OBS networks.
In the proposed scheme, the burst assembly unit inspects
TCP packet headers in parallel to the assembly process,
keeping flow-level traffic statistics. These are then exploited
to derive accurate traffic predictions, in at least one flow
round trip time-long prediction window. This allows notifying
traffic schedulers of upcoming traffic changes in advance,
in order to optimally reschedule their resource reservations.
In this paper, we detail the traffic profiling and prediction
mechanism and also provide analytical and simulation results
to assess its performance. The performance gains when using
the prediction scheme are shown with a modified one-way OBS
reservation protocol, which efficiently and in advance reserves
resources at the burst level.

Index Terms—Burst assembly; Optical burst switching; TCP
profiling; Traffic estimation.

I. INTRODUCTION

T CP transmission over optical burst-switched (OBS) net-
works [1] has been extensively studied in the related liter-

ature. Various burst assembly and burst scheduling algorithms
have been proposed, to enhance the efficient transmission of
TCP-over-OBS networks. However, it still remains an open
problem, since the relatively high burst loss ratio experienced
in OBS networks is incompatible with a TCP congestion control
mechanism. It has been observed that burst losses have a
significant impact on the TCP end-to-end performance. In
particular, TCP transmission over OBS networks suffers from
the high number of segments that are lost upon a single burst
drop. This typically results in many sources timing out and
subsequently entering the slow-start phase. It may also result
in synchronizing TCP transmissions with an imminent effect
on link utilization [2]. The introduction of an unpredictable
delay challenges the window mechanism used by the TCP
protocol for congestion control.
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Enhancing TCP throughput over OBS is critical, since TCP
traffic represents a dominant part of Internet traffic. Recent Q3

Internet measurement studies [3] show that TCP protocol is
responsible for over 95% of the total Internet traffic. This
has led many researchers to cope with the performance
evaluation [4] and enhancement [5–7] of TCP performance
over OBS, which nevertheless remains an open problem.
One very interesting approach for the enhancement of TCP
performance over OBS is traffic prediction. If it were possible
to accurately predict the throughput of TCP flows, it would
also be possible to predict burst sizes. That would allow
making reservations of the appropriate resources in advance,
enhancing network performance and improving bandwidth
utilization. This approach has proved promising in previous
works, which exploit burst size predictions to perform forward
resource reservations, achieving performance enhancements
and reduced edge delay [8].

Predicting aggregate traffic at an edge node is treated as
a time-series modeling problem in the literature, in which
one attempts to predict the future value of the aggregated
throughput, based on a traffic history record. This approach
requires the use of traffic models that capture the underlying
traffic structure, and then perform time-series analysis. The
most commonly used self-similar processes for representing
long range dependent (LRD) traffic are fractional Gaussian
noise (fGn) and fractional auto-regressive integrated moving
average (fARIMA) processes [9]. However, such methods
have a high computational complexity, and are considered
inappropriate for short-term predictions. Another approach
that makes no assumptions about underlying traffic structure
concerns the use of minimum mean square error predictors like
the least mean square (LMS) filter [10]. The predictions are
output of a Linear Prediction Filter, whose weights are updated
online, in a way that minimizes the mean square error between
predicted and true values. An added benefit of this approach is
the relatively low computational complexity.

However, using LMS filters for traffic forecasting also bears
a significant limitation, which is the lack of traffic information
at the flow level. Traffic measurements of aggregated
throughput only reflect network conditions at the time that the
measurements were taken. Thus, changes in the network state
(such as the burst loss ratio) are enough to invalidate them,
taking time for the filter to converge.

In this work, predictions are based on flow-level modeling of
network traffic, combined with a TCP-specific traffic profiler.
The traffic profiler periodically outputs flow-level traffic
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statistics, compiled in real time and exploited in the burst
prediction process. This approach, although more resource
intensive than simply keeping track of the aggregated
throughput, is advantageous for achieving fast convergence
times in the case of sudden state changes, as it takes advantage
of the inherent predictability of TCP flows.

The contribution of this work is twofold. First, we propose a
TCP traffic profiler and traffic predictor for OBS networks that
is integrated with the burst assembly process. The proposed
prediction scheme performs traffic and burst size predictions
based on flow-level traffic statistics computed in real time by
the profiler. A detailed evaluation of the proposed prediction
scheme proves accurate for short-term forecasting for intervals
of a few flow round trip times (RTTs). Second, we disclose the
performance gains of the predictive mechanism using a novel
one-way resource reservation protocol that performs predictive
batch reservation of resources at the burst level.

The rest of the work is organized as follows. In Section II,
some background information and related work is discussed.
Section III presents the TCP profiling architecture for OBS
networks, while Section IV presents a flow-level model for
representing TCP traffic in backbone networks, as a multiplex
of a finite number of TCP connections. Section V presents a
novel burst prediction mechanism, based on traffic statistics
gathered by the flow profiler, that is then used (Section VI)
in a prediction-based reservation scheme for one-way TCP-
over-OBS networks. Finally, Section VII presents detailed
performance evaluation results, investigating the accuracy
of the proposed prediction scheme and the performance
gains obtained with the proposed prediction-based reservation
protocol.

II. BACKGROUND AND RELATED WORK

In the TCP-over-OBS literature, two classes of solutions
have been proposed for the enhancement of TCP performance
over OBS networks. One class of solutions tries to mask the
effect of bursts losses to the TCP protocol using deflection
routing [11], burst retransmissions [7], or a coordinated
multi-layer approach [12]. A second class of solutions focuses
on improving TCP protocol to detect false congestion events
and not trigger the congestion avoidance mechanism for
packets lost due to contention. These techniques are based
either on feedback received from burst losses, communicated
to the TCP sender as in BTCP [5], or analyzing RTT statistics
in a short time frame, as in SAIMD [6], to infer congestion.

Predictive resource reservation is another solution for
performance enhancement in OBS networks that lies in the
OBS domain (i.e., it does not require changes to the underlying
transport protocols). It has attracted considerable research
attention [8,10], as it can achieve a low burst loss ratio,
comparable to that of two-way OBS, but with a reduced edge
delay. In these works, bandwidth allocation in the network core
is based on burst size predictions, output by an N-order LMS
filter. This allows the reservation process to begin before the
actual burst size is known, resulting in a latency reduction.
Another advantage is that LMS filters make no assumptions
about underlying traffic structure concerns the use of a Linear

Prediction Filter [10], whose weights are updated online, in a
way that minimizes the mean square error between predicted
and true values. Q4

In this work, we extend this approach, relying on flow-level
TCP traffic profiling to predict future burst sizes. Network
traffic is modeled as the superposition of TCP connections,
allowing us to take advantage of TCP predictability at the flow
level, which is captured by well-known performance modeling
formulas [4]. Burst size predictions are obtained from online
traffic measurements, compiled in real time from a TCP flow
profiler. This is advantageous for achieving fast convergence
times in the case of sudden changes in the traffic profile
(i.e., due to the sharp increases in the flow arrival rate), which
is a scenario that LMS predictors suffer [8]. Further, we also
propose a new predictive resource reservation protocol that
exploits the above-mentioned burst-level predictions. Overall,
the contributions of this work are as follows.

• Design of a TCP-over-OBS flow profiling scheme for
extracting detailed flow-level traffic statistics.

• Design of a TCP throughput predictor, that periodically
outputs an estimation of the aggregated TCP throughput
and the future burst sizes, based on traffic statistics.

• Contribution of a new predictive resource reservation
protocol that communicates to the core nodes the upcoming
traffic changes and in advance performs burst-level
reservations.

The proposed scheme is compatible only with TCP traffic,
since it relies on profiling the window dynamics of TCP
protocol. UDP flows can be present on the network and they
can be assembled together with TCP flows, but these will not
be taken into account in the prediction process but rather
considered as background traffic. In scenarios where UDP
flows have a significant contribution to overall bytes trans-
mitted (i.e., >5%) other predictions schemes, such as the ones
referenced in [8,10], can be applied specifically to UDP traffic.

A. TCP Traffic Predictability

Formula-based estimation of TCP throughput has been
shown to be a viable solution for predicting network state in
OBS networks. The authors of [13] were able to effectively
derive the TCP equilibrium point in an OBS link, assuming
a fixed number of active long-lived TCP connections. The
feedback control mechanism of TCP protocol is known to
introduce a degree of predictability in TCP traffic, as it
operates in a purely deterministic way. The TCP congestion
window (usually written as cwnd) follows a periodic saw-tooth
profile in the steady state, a pattern which is common to
all TCP implementations. Differences in the implementation
of the fast-retransmit/fast-recovery phase have a small
contribution to the overall throughput for practical segment
loss ratios. Newly arrived TCP flows enter the slow-start
phase, where they have to probe for network capacity, by
starting their transmission with a cwnd of 1, which is then
doubled in every lossless round. Conversely, on a TCP round
with at least one loss the cwnd is divided by 2, and it enters the
steady-state phase (where cwnd increases by one segment per
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round). TCP predictability is known to be negatively impacted
by unpredictable queueing delays in congested paths. This
results in fluctuating RTTs that affect the accuracy of the
TCP performance estimation formulas. However, due to the
bufferless nature of OBS networks, large TCP flow transfers
over OBS are very predictable.

TCP steady-state and slow-start performance in OBS
networks can be accurately predicted by making use of
appropriate performance modeling formulas. Long-lived TCP
flows reach a steady state (or congestion avoidance state)
which corresponds to an equilibrium point, where the network
capacity is equally shared among all active flows. Thus, their
performance is dominated by steady-state TCP performance
over OBS [4]. The performance model for steady-state flows
requires up-to-date measurements of the burst loss ratio p, as
well as the number of segments per burst (SPB) transmitted.
On the other hand, the performance of short-lived flows isQ5

dominated by RTT and TCP slow-start performance, as they
typically conclude their transmission before experiencing a
loss. In this work, we take into account both short-lived and
long-lived flows, employing appropriate modeling to predict
their performance in the slow-start and the steady-state
phases.

B. Traffic Profiling

Traffic profiling is vital in commercial enterprise-class net-
works, because it serves as a basis for network management,
capacity planning, and for gaining insights on user-perceived
performance. Monitoring devices are typically deployed on the
network edge, to capture packets from monitored flows and
extract flow-level traffic statistics. Cisco Netflow [14] is an
example of such a system, deployed in commercial networks.
It operates in a passive mode (i.e., it does not inject or
alter traffic but it measures existing traffic passing through),
and it is able to extract detailed traffic statistics in the
network points, where traffic measurements are carried out.
These statistics concern flow performance variables such as
throughput and loss ratio. It must be noted that estimating
flow-level statistics is a resource-intensive process, which uses
up significant resources of forwarding devices. Thus, flow
monitoring architectures typically resort to a flow sampling
technique to reduce the measurement and profiling overhead.
According to this technique, per-flow counters are updated
solely for a small subset of flows, which typically does not
exceed 1/1000 of the active ones. In this work, a new TCP
flow profiling architecture for OBS networks is proposed,
which uses the well-known hash-based sampling technique
for extracting detailed network-wide traffic statistics. Flow
sampling is integrated with the burst assembly process, in the
edge node.

III. TCP TRAFFIC PROFILING

In this section, a TCP profiler architecture for OBS
networks is presented. Its goal is to provide running online
measurements of flow parameters and performance counters,
and extract flow-level traffic statistics. Estimating TCP

workload characteristics constitutes the basis for our traffic
prediction and bandwidth provisioning scheme. It is performed
at the edge nodes of an OBS network, and it is integrated with
the burst assembly process [15].

A. Flow Sampling Architecture

Traffic measurements are typically performed on sampled
packet substreams, a process called traffic sampling, in order
to limit the consumption of resources. These measurements
are subsequently used to compile flow-level statistics of active
TCP flows. One of the key issues in sample-based estimation
is the unbiased selection of sampled packets, which must be
independent of the measured quantities, in order to avoid
any selection bias. For example, probabilistic sampling used
in the Cisco Netflow system for estimating the flow length
distribution is known to be prone to selection bias, and to
underestimate the frequency of short flows [16].

The TCP flow profiler proposed in this work employs the
hash-based sampling technique [17], which is unbiased and
has a straightforward and efficient implementation. This
technique performs a random (Bernoulli) selection of flows and
retains all packets received from sampled flows. Selected (or
sampled) flows are called the flow sample, and they account
for a small percentage (typically 1/1000) of overall active flows.
The flow sample is stored on a hash table, which maintains a
set of per-flow counters, updated on a packet-by-packet basis.
This hash table is indexed by the flow-tuple.

For every packet that is received by the burstifier, the flow
profiler determines whether a flow record is active for that
flowID. If a flow record is active, the flow statistics are updated
on reception of the packet. If not, the profiler must decide
whether the packet will be retained. Since hash algorithms
are designed with an objective to evenly distribute a stream of
(possibly correlated) values, the flowID is assumed uniformly
distributed and thus can serve as an unbiased criterion of flow
selection. Specifically, the selection probability is ps = 1/N,
where 1/N is the sampling rate, and u is a normalization of the
flowID, u ∈ [0,1]. Then, if u ≤ ps, the flow is sampled or else it
is not. If the flow is sampled, then the profiler instantiates a
new record with the packet’s flowID.

Hash-based sampling is carried out in parallel with the
burst assembly process, where the packets’ headers are, in any
case, inspected for being assigned to the appropriate assembly
queue. Thus, the overhead of the scheme is limited to a few
clock cycles for the computation of the flow hash for the
unsampled packets and an additional read/write memory cycle
for updating the performance counters of sampled packets. To
this end, the prime constraints are memory bandwidth and
memory size, which are proportional to the sampling rate. In
other words, the higher the sampling rate is, the more the
active flows that are being stored in the hash table and the
more the read/write cycles for updating their statistics.

B. Flow Performance Counters

The flow profiler stores an array of counters per sampled
flow, to measure a set of flow characteristics. After receiving a
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packet that belongs to the flow sample, it updates one or more
of the corresponding counters. These per-flow counters are as
follows.

1) Flow length: This measures the number of TCP data
packets transmitted from the flow. It is incremented on a
packet-by-packet basis.

2) Flow RTT: This measures the round trip time from the flow
source to the destination. It is calculated once during the
three-way handshake period, a procedure detailed in [18].
The profiler must keep track of the time each control packet
(SYN, SYN-ACK, and ACK) was received. Then, the flow
RTT is estimated as the sum of Profiler-to-Server and
Client-to-Profiler round trip times.

3) SPB ratio: This counter measures the number of segments
of the flow assembled in a burst. Flow SPB is determined
by the flow sending rate and the duration of burst assembly
timer (Tbat), i.e., for flow i with a sending rate r i , E[SPBi]=
E[r i]×Tbat.

The storage requirements for each per-flow record are less
than 100 bytes, since we only have to store the aforementioned
flow counters as well as the flowID. It is clear that, for very high
sampling rates, the memory bandwidth required to update the
aforementioned counters can become significant. For example
for a 40G link, updating counters on a packet-by-packet basis
(i.e., within a few ns) requires a fast SRAM for storing the flow
sample, trading high memory bandwidth for a significantly
smaller capacity. Alternatively a hybrid counter architecture
can be used, combining high bandwidth of SRAMs for storing
fast-changing “shallow” counters, with high capacities of
DRAMs for storing slowly changing “deep” counters [19].

C. Extracting Sampled Flow Statistics

In parallel to updating flow counters, the flow profiler also
compiles flow-level traffic statistics. Specifically, it estimates
the empirical density functions of the flow SPB and RTT
counters. Given (x1, x2, . . . , xn) an array of n RTT or SPB
samples, the empirical density function can be output from
a density estimator, such as a simple histogram estimator,
or a kernel density estimator. The latter, for kernel K
and bandwidth h, calculates the unknown empirical density
function f̂ as

f̂ (x)= 1
n

n∑
i=1

K
( x− xi

h

)
. (1)

Thus, along with the flow counters, the profiler also outputs
RTT(.) and SPB(.) densities, updated periodically during a
window of measurements. Time is divided into measurement
epochs (e.g., 5 min periods) during which RTT and SPB
samples are gathered by the profiler. At the end of each
measurement epoch, the density estimates are updated using
a non-parametric density estimation method. It must be noted
that the flow-based sampling technique employed by the
profiler is known to guarantee an independent selection of the
flow sample. Thus, sample-based traffic statistics can serve as
unbiased estimates of unsampled ones [16].

D. Estimating Burst Loss Ratio

The estimation of the burst loss ratio is carried out by the
profiler based on the signaling messages received at the edge
router’s control unit. For every dropped burst, the core node
returns a message to the edge router to report the loss. This
is communicated to the profiler, which stores a bit vector of
bursts successfully transmitted (denoted with ‘0’) and bursts
lost (denoted with ‘1’). Bit values Xk are assumed to be
independent Bernoulli random variables that take value ‘1’
with a probability equal to the burst loss ratio. The burst loss
ratio is thus estimated as the sum of ‘1’ values in the vector
divided by the vector length W . Thus, the burst loss ratio p is
derived as

p =
∑W

1 Xk

W
. (2)

For the online estimation of the burst loss ratio, we use the
sliding window averaging technique that discards aging val-
ues, older than the vector length. According to this technique,
given that Xk is the kth bit value of the vector corresponding
to the kth burst transmission and W is the vector length, a
running estimation of burst loss ratio is obtained by

X̂ i+1 = 1
W

i∑
k=i−W+1

Xk. (3)

The vector length W is calculated based on the desired
accuracy, using the analytic model proposed in [20]. The
estimated burst loss ratio error for a vector length W , a real
burst loss ratio p, accuracy a, and confidence interval 95% is
derived as

W =
(

1
p
−1

)(
196
a

)2
. (4)

For example, for a burst loss ratio of 1% and an accuracy of
±10%, W corresponds to a bit vector length of 38032.

IV. TCP TRAFFIC MODELING

Many authors have analyzed the Internet traffic and
have shown that it behaves in agreement with LRD and
self-similar processes [9]. Typically, time-series models are
used for modeling Internet traffic, in the form of an aggregate
rate function. Time-series models are hard to calibrate
(i.e., estimate their parameters for a given network workload),
due to the high degree of multiplexing of numerous flows,
whose behavior is strongly influenced by the transport protocol
and the network state. Additionally, time-series models lack
information at the flow level, and measurements of aggregated
throughput only reflect network conditions at the time that the
traffic measurements were taken.

A. Traffic Model

In this work, we model network traffic as the multiplex of
a finite number of TCP flows, an approach proposed in [21].
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TCP flow dynamics are a function of the flow congestion
window, whose evolution is a function of a small set of
parameters, i.e., the round trip time, segment-per-burst ratio,
and the burst loss ratio. The TCP flow profiler detailed in the
previous section keeps traffic statistics for TCP performance
parameters as well as the number of active TCP flows. Thus,
the aggregated throughput of N active TCP flows can be
derived as R(t) = ∑

N X m(t), with X m(t) being the flow rate
process that measures the transmission rate of flow m.

In what follows, time is divided into control time intervals of
duration τ, termed prediction intervals. We define S(m)

k as the
discrete time equivalent of the flow-m rate process. It returns
the number of segments transmitted from flow m during the
kth prediction interval, from time t = k ·τ to t = (k+1)τ, based
on its rate process X (m):Q6

S(m)
k =

∫ (κ+1)×τ

κ×τ
X (m)(t)dt. (5)

The flow rate process depends on the TCP protocol dynamics
and the flow connection size, to be discussed in the following
sections.

B. Flow Connection Size Model

According to the flow-level model employed in this work,
network traffic is represented as the superposition of TCP
connections that arrive, transmit a file at the rate allowed
by their congestion window, and then leave the system.
Connection sizes are drawn from a heavy-tailed Pareto
distribution. This is a commonly accepted model, as it explains
the self-similarity of Internet traffic [9]. In what follows, the
connection size distribution is modeled with a Pareto random
variable X , whose complementary CDF, defined as P(x) =
Pr(X > x), is of the form

P(x)=
(

x
xmin

)−α
. (6)

It can be seen that P(x) is parameterized with the xmin
parameter, as well as the tail index parameter α of the
heavy-tailed distribution. For estimating the index parameter
a, the profiler uses maximum likelihood estimation (MLE).
The estimation is based on a sample of connection size
observations, maintained by the profiler for the duration of a
measurement epoch (typically a few minutes long). For every
sampled flow that terminates, the flow profiler keeps a record
of its length at the termination time. The MLE that outputs an
estimate of the tail index α based on these observations is [22]

α̂= n

[
n∑

i=1
ln

(
xi

xmin

)]−1

, (7)

where xi , i ∈ [1. . .n], are the observed values of the flow
connection sizes. The minimum connection size xmin is
assumed known or easily extracted directly from just observing
the data. This procedure is repeated periodically to take into
account a possible shift on the flow size distribution over the
course of time.

It must be noted that the flow connection size is not directly
observable when random packet sampling is employed in the
traffic profiler, as in [23]. In that case, a thinned version of the
connection size distribution is output from the profiler, making
the process of estimating the index parameter more complex
and subject to a high variance. However in the flow-based
sampling scheme employed in this work, all packets from
sampled flows are retained, allowing a more efficient solution
for the estimation of the tail index parameter.

In what follows, we refer to P(x) as the flow survival
function, as it captures the probability of a flow surviving,
i.e., staying active, to transmit at least x more bytes. The
survival function is used in the calculation of the expected
residual life e(x) of a flow with given length x (i.e., the average
number of bytes that the flow transmits before concluding its
transmission), and it is defined as

e(x)=
∫ ∞

x

P(u)
P(x)

du. (8)

C. Active Flow Histogram

For fully characterizing the TCP workload, the traffic
profiler must count the number of active TCP flows along with
the service they have received so far from the network, which
is represented by the number of packets they have transmitted
so far (i.e., their flow length). All monitored TCP flows are
organized in a flow histogram, based on their current flow
length, which is updated online on a packet-by-packet basis.
Inactive flows, i.e., the ones exceeding a time threshold of
inactivity, are removed from the histogram. On this basis,
it is possible to estimate the overall number of active flows
and their expected residual life, which constitute the two
fundamental metrics for characterizing any work-conserving
queueing system and predicting its evolution.

Flow length denotes the service that a flow has received so
far from the network, and it serves as a basis to estimate its
expected residual life. Specifically, given flow i with length xi ,
the probability that flow i transmits yi bytes before completion
(i.e., its survival probability) is derived as

Ri = Pr
[
X > xi + yi |X > xi

]= P
(
xi + yi

)
P

(
xi

) =
(

xi
xi + yi

)α
, (9)

where X is the Pareto random variable that corresponds to the
flow length and P(.) the flow survival function output by the
flow profiler.

Since it is infeasible to keep track of every active flow and its
residual life, a frequency histogram is constructed for keeping
track of the length distribution of sampled flows. To construct
the histogram, the flow sample is partitioned into a number
of discrete intervals, or bins, with each bin corresponding to
a range of flow lengths. For example the kth bin, denoted as
Bk, corresponds to NFk flows with a length in the range of
(rk, rk+1] bytes. Due to the unbiased selection of the flow
sample, the number of unsampled flows that fall into Bk
and have a length of (rk, rk+1] converges to the number of
sampled flows NFk multiplied by N, which is the inverse of the
sampling rate. Thus, the calculation of N ·NFk constitutes an
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unbiased scaling estimation of the number of unsampled active
flows with a length of (rk, rk+1]. Regarding the standard error
of this estimation, it is derived from the number of active flows
on NFk as well as the profiler sampling rate N, and is given
by [16]

√
Var(N̂Fk)

NFk
=

√
N

NFk
. (10)

It can be seen that the standard estimation error is
small, and it can be made arbitrarily small using a high
sampling rate. It is also evident that histogram estimators
are not efficient for estimating small frequencies, and thus
a very small NFk (compared to the sampling ratio) leads
to a high variance. Due to the heavy-tailed nature of flow
duration, very long flows appear with small probabilities,
leading to almost empty rightmost bins of the flow histogram,
which can cause a high variance, as shown in Eq. (10).
Thus, for a given error bound, long-lived flows exceeding a
certain threshold termed the long-lived flow threshold are
pooled to the rightmost bin of the histogram. The survival
probability of these flows is approximated as 1, based on a
fundamental property of the heavy-tailed random variable
X limxi→∞ Pr

[
X > xi + yi |X > xi

]= 1.

Another source of errors in frequency histograms is the
smoothing error induced on the frequency distribution, as
information of individual flow lengths in a bin is lost. Flow
lengths in Bk are represented by the mid-value Lk, thus
leading to an error ∆xi = |xi − Lk|, xi ∈ Bk. This error is
quantified with the standard deviation metric stdev(Bk) and
clearly depends on the bin width. The uncertainty in the flow
length xi ∈ Bk, which is approximated as xi ≈ Lk, further
propagates to the calculation of the flow survival probability
Ri . The standard deviation metric stdev(Ri) is derived using
well-known error propagation formulas in Eq. (9) asQ7

stdev(Ri)
Ri

=α× stdev(Bk)
xi

× yi
xi + yi

. (11)

Based on the error estimates derived from Eqs. (10) and
(11) per histogram bin, we empirically design the active flow
histogram by selecting the appropriate bin widths so that the
standard estimation error stays under 5%. As regards the edge
bin that extends to infinity, the long-lived flow threshold serves
as its left bound, indirectly determining the overall number of
bins.

V. ONLINE BURST SIZE PREDICTION

OBS can offer significant statistical multiplexing gains, due
to its ability to support sub-wavelength switching in the optical
domain. However, its bufferless nature and unacknowledged
transmission of bursts can lead to a high degree of losses due
to contention. A viable solution that has been proposed in
the literature is advance reservation of resources [8], which
closely keeps track of the prevailing traffic characteristics.
The implementation of such a dynamic scheme requires an
efficient burst prediction mechanism as well as a signaling
protocol that communicates to the core routers upcoming
traffic changes. This approach, given a reasonably accurate

prediction method, can combine the performance and quality
of service (QoS) guarantees of two-way signaling with the low
latency of one-way signaling [10].

In this section, we detail the prediction mechanism
required to estimate burst sizes, based on the online traffic
measurements obtained from the traffic profiler. The proposed
prediction scheme takes advantage of traffic predictability at
the flow level to obtain aggregate TCP traffic and eventually
burst size predictions. Specifically, it exploits the fact that
newly arrived flows have to probe for network capacity, by
starting their transmission with a congestion window of one
segment which is doubled in every lossless round. Thus,
it is possible to analytically and in real time estimate the
expected TCP throughput increase due to the increase of flows’
congestion windows or decrease due to burst losses [24].

In what follows, the time is divided into prediction intervals,
whose duration is denoted with τ. The discrete time rate
process of flow m is denoted with S(m)

n , and is derived from
Eq. (5) as the number of segments transmitted in the nth

prediction interval. The predictor at the end of each prediction
interval, at t = n ·τ, estimates the aggregate number of bytes
to be transmitted in the following prediction interval, that is
up to t = (n+ 1)τ. As mentioned in the previous section, the
aggregate rate R(t) is obtained as the multiplex of individual
TCP flows. Thus, according to the law of large numbers, the
aggregate number of packets transmitted by NF active flows
in the nth prediction interval converges to

E[R(t)]= NF ×E [Sn] . (12)

In the above equation, we use the assumption of uncon-
gested backbone links, which allows us to claim that the TCP
flow rates are independent. This is a valid assumption, as
in most OBS studies the burst loss ratio never exceeds 1%.
In what follows, we will focus on predicting the expected
number of bytes transmitted from active flows within one
prediction interval, based on flow statistics maintained by the
flow profiler.

A. Predicting TCP Flow Rate

There is a large body of literature on modeling the through-
put of TCP flows over OBS as a function of flow and network
parameters. Typically, macroscopic TCP models assume perfect
periodicity of TCP flows, which are assumed to follow a
saw-tooth profile and have unlimited data to send. Then,
TCP performance is reduced to a closed-form equation that
only takes into account steady-state performance. However,
this approach yields a small accuracy in real-world networks,
where flows have a finite duration, and it can take a significant
amount of time, compared to flow lifetime, to reach the steady
state. In this case, slow-start performance becomes significant
and thus it has to be taken into account.

In this work, we take into account both the slow-start and
steady-state phases, to predict the sending rate of TCP flows,
as defined in the discrete time rate process in Eq. (5). We
assume an idealized scenario in which the trajectory followed
by the TCP congestion window is deterministic. Each TCP
flow starts its transmission in the slow-start phase with a
congestion window of one segment. It then exponentially grows
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to the steady-state window, until it concludes its transmission.
The fast-retransmit and time-out periods are not taken into
account, as they have a small contribution to the TCP
throughput. The aforementioned simplifications are common
to TCP models, and do not introduce significant inaccuracies
as long as the burst loss ratio is kept small. For both the
slow-start and steady-state phases, the TCP throughput is
obtained from well-known performance modeling formulas.
Specifically, we predict the sending rate of a TCP flow, denoted
as flow i, as the number of segments Si transmitted in the
following prediction interval. Si is derived as a function of flow
parameters SPBi , RTTi , and L i , i.e., the segment-per-burst
ratio, round trip time, and flow length, respectively:

Si = S
(
SPBi ,Ri ,L i

)
. (13)

The steady-state TCP window is obtained from [4], a formula
which is accurate for small values of burst loss ratio p
(typically p < 1%):

cwnd=min

{√
1.5×SPBip

p
,Wm

}
, (14)

where Wm is the TCP maximum window size (in segments)
that is constrained from the advertised TCP window as well
as the flow access rate. As long as the flow congestion window
cwndi does not exceed cwnd, the flow is assumed to be in the
slow-start phase. The instant flow congestion window in the
slow-start phase can be derived from its flow length [25] as

cwndi =
L i
2

. (15)

Regarding the slow-start performance, it is modeled in
rounds of RTT duration. Given τ the duration of one prediction
interval, we denote r = τ/RTTi as the duration of the prediction
interval in TCP rounds. The number of segments transmitted
from a (lossless) slow-start flow in r rounds, starting with a
congestion window of cwndk, is [25]

Si = cwndi × (2r −1). (16)

After cwndi exceeds cwnd, we assume that the flow has
reached a steady state. As soon as the flow reaches the steady
state, cwnd segments are transmitted on average per round, or
r · cwnd segments per prediction interval. Overall, the number
of segments transmitted within a prediction interval from flow
i either in the slow-start phase or the steady-state phase is

Si =
{

cwndi ×
(
2r −1

)
, when cwndi ≤ cwnd

r×cwnd, when cwndi > cwnd

}
. (17)

B. Predicting Burst Sizes

In previous sections, we have shown how to characterize the
network workload with the proposed traffic model, and how to
predict the evolution of individual TCP flow rates. These are
combined for deriving aggregate TCP throughput and burst
size predictions for the following prediction interval. It must

be noted here that the complexity and burstiness of the flow
arrival process can significantly affect the number of active
flows and their distribution in the active flow histogram. For
example, a sudden burst of connection arrivals propagates
from the leftmost bins of the histogram to the rightmost
ones, as the newly arrived flows transmit packets, gradually
increasing their congestion windows.

The flow profiler detailed in the previous section provides
online estimates of the pairs {NFk, lengthk} that correspond to
the number of active flows NFk assigned to the kth bin of the
histogram, and have a flow length of lengthk. In what follows,
we rely on flow-level statistics of active TCP connections output
by the flow profiler along with expected residual life estimates,
as expressed in Eq. (8), to analytically derive the aggregate
TCP throughput for the following prediction interval.

Given SPBi , RTTi , and L i , the TCP parameters of flow i,
and S(SPBi ,RTTi ,L i) its sending rate derived from Eq. (17),
the expected number of bytes it transmits in the following
time interval, before concluding its transmission, is obtained
by integrating the flow survival function P(.):

B(SPBi ,RTTi ,L i) =
∫ yi+S

yi

(
SPBi ,RTTi ,L i

)
×MSS

P(u)
P(yi)

du, (18)

where yi = MSS ·L i is the byte length of flow i and MSS the
network maximum segment size. Next, we derive the expected
number of bytes transmitted from all active flows assigned to
one histogram bin, denoted as bin k. For doing so, we assume
that all flows in a bin have the same length, which corresponds
to the mid-value of the bin range and is lengthk. Further,
using the empirical distributions of the round trip times and
segment-per-burst ratios estimated by the profiler, i.e., RTT(i) Q8

corresponds to the frequency of RTTi value and SPB(i) to
the frequency of SPBi value, the expected number of bytes
transmitted from all flows assigned to the bin k histogram bin
Hk is derived as

E[Hk] = NFk ×
∞∑

i=1
SPB(i)×

∞∑
j=1

RTT( j)

×B
(
SPBi ,RTT j ,Lk

)
. (19)

Thus, the predicted number of bytes transmitted from all
active flows, assuming M bins in the flow histogram, is

B̃ =
M∑

k=1
E[Hk]. (20)

Finally, the predicted burst size is obtained by equally
dividing B̃ with the number of bursts created during the
prediction interval τ , assuming that Tbat is the assembly time:

L̃ =
(

Tbat
τ

)
× B̃. (21)

Clearly, this scheme assumes constant burst sizes within
the same prediction interval. This assumption is valid when
the traffic profile within the prediction interval is relatively
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smooth, which depends on input load variations. The effect
of this error in burst size prediction will be evaluated in the
following sections. In any case, it must be noted that TCP
traffic is expected to exhibit a degree of sub-RTT burstiness,
which cannot be captured by the proposed scheme. However,
the accuracy in the proposed burst size prediction scheme
can be improved using either smaller interval periods and/or
a worst-case correction parameter, to be discussed in the
following section.

VI. PREDICTION-BASED RESERVATION OF

RESOURCES

The prediction of future burst sizes using TCP dynamics,
detailed in the previous sections, can be used for advance
notifying the core nodes of upcoming traffic changes per
prediction interval. In this section, we propose a resource
reservation scheme, in which edge nodes send a single setup (or
refresh) message per end destination per prediction interval,
in order to communicate to the core nodes across the path
the aggregate traffic of the next prediction interval. This
allows core nodes to reschedule their resources in view of the
updated (predicted) traffic conditions. In this way, optimization
of the link utilization and minimization of burst losses can be
achieved.

A number of one-way reservation schemes has been pro-
posed for OBS networks, including JET, JIT, and Horizon [26].
Resource reservation in one-way OBS networks is typically
handled from link schedulers, which assign wavelengths to
incoming bursts based on an online scheduling algorithm.
However, online scheduling algorithms such as LAUC [27] are
best effort in nature and often make sub-optimal decisions.
At the reception of a burst header packet (BHP), the link
scheduler searches for unscheduled channels that can service
the corresponding burst and selects the best available at
that time. Since the scheduler has no information for future
arrivals, bursts are never blocked as long as a feasible
wavelength can be found, even if dropping a burst would
maximize the overall number of accepted ones. Additionally,
channel selection in GOLs is sub-optimal when BHPs arrive
at a random order, and not in the order of burst arrival
times [28]. This issue is common in OBS networks, where
differences in the burst offset times and propagation times
can lead to burst losses even in scenarios where a feasible
scheduling is possible [28]. Here, we propose the use of one
SETUP message per source–destination pair in the beginningQ9

of each prediction interval to notify the core routers of the
future upcoming burst sizes. Thus, core routers can use batch
scheduling algorithms, achieving a decreased burst loss ratio
due to the more efficient use of resources. It is important
to note that the use of one SETUP message does not affect
the different classes of service that may be employed in the
network. The single setup message is enough to carry the burst
overhead information (burst start time, predicted burst size)
from all priority classes per source/destination pair.

A. Signaling Protocol

The proposed reservation protocol is based on the obser-
vation that the arrival time of the bursts at the core nodes

time
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Fig. 1. (Color online) Link scheduler utilization profile, repeated
periodically on a TBAT basis.

is periodic, with a period equal to the burst assembly time
(Tbat). This periodicity allows burst arrival times at individual
core nodes to be accurately predicted. This is shown in Fig. 1,
which illustrates the scheduler’s utilization profile for a single
outgoing link. The utilization profile consists of a set of burst
arrivals, each scheduled for a specific wavelength. Bursts that
belong to the same source–destination pair (and thus have
been assigned to the same assembly queue) are marked with
the same color. These are assumed to belong to the same Class
of Service (CoS), and are assigned the same CoS identifier.

The proposed reservation protocol augments the standard
one-way JET signaling with a SETUP message that carries
the predicted burst size. One such message is sent per
source/destination pair at the beginning of the prediction
interval. As seen in Fig. 2, the SETUP message propagates
downstream and notifies the link schedulers along the path
with the burst arrival time as well as their predicted size
for the following prediction interval. At the reception of
this SETUP message by a core node, resources are reserved
for all the bursts of the prediction interval, while actual
bursts will arrive at a later time according to the predicted
arrival times. This scheme allows schedulers to obtain a priori
knowledge of all bursts competing for each outgoing link, and
use a more efficient batch channel scheduling algorithm. The
assignment of wavelengths to bursts can thus be performed
once per prediction interval for each CoS (or equivalently
source–destination pair), alleviating the need for per-burst
scheduling.

The wavelength allocation in each link scheduler is
performed as soon as a new SETUP message is received.
Upon its reception a scheduling algorithm is executed looking
for a scheduling solution that satisfies the requirements of
all source–destination pairs competing for the same outgoing
link. In order to accommodate the updated (or new) burst
size, rescheduling of previously scheduled bursts in a different
wavelength or even burst dropping may be required. The CoS
identifiers of unscheduled bursts (i.e., failed to be scheduled
due to lack of resources) are piggy-backed in the SETUP
message, so they are not considered for scheduling in the
downstream nodes. Link-state information in the proposed
scheme is stored in one ordered list per outgoing link, sorted
by burst arrival time. For each source–destination pair, the
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Fig. 2. (Color online) Timing considerations of the proposed
predictive reservation protocol. Dots denote burst reservations based
on predictions, which are communicated to all nodes across the path
with a single setup message. Actual bursts arrive at a later (predicted)
time.

scheduler stores the state information of the burst arrival time
and the predicted burst length, as well as its assigned outgoing
wavelength.

B. Scheduling Algorithm

As mentioned in the previous section and shown in Fig. 1,
the arrival time of the bursts at the core nodes is periodic,
with a period of TBAT . Thus, the link-state timing information
can be mapped in a [0,TBAT) interval using modular (residue)
arithmetic. The timing information of burst bi , i.e., its start
time si and its end time e i , is represented as

si = start_time(i) mod Tbat

e i =
(
si + length(i)

)
mod Tbat,

where start_time(i) and length(i) are the arrival time and the
predicted length of bi . It must be noted here that the definition
of modulo operator is extended to include real numbers. For
positive real numbers a and n, we define a mod n = a− i×n, for
integer i ≥ 0 and 0 ≤ (a mod n) < n. Bursts that belong to the
same CoS have the same arrival time and the same (predicted)
end time in modulo representation, and thus burst scheduling
is performed per CoS.

The batch scheduling and wavelength assignment problem
can be solved optimally by the Arkin and Silverberg (AS)
algorithm [29], which takes as input all [si , e i] intervals
that correspond to burst start and end times. Bursts that
wrap around Tbat and have e i < si are split into two parts,
i.e., [0, e i] and [si ,Tbat], with the added constraint that they
must both be scheduled on the same wavelength. However,
the AS algorithm has a high computational complexity of
nk+1, which is prohibitive for networks with a high number
of wavelengths (for example, k ≥ 5). Thus, we considered
here more efficient albeit non-optimal scheduling algorithms,
suitable for scheduling problems with fixed start and end
times. Such a scheduling problem can be modeled as a special
case of the interval scheduling with machine availabilities

(ISMA) problem. Given a set of k wavelengths, we first
schedule each split interval in a different wavelength wi , as
all split intervals overlap with each other. Thus, wavelength
wi is now only available in a subset of the interval [0,Tbat).
Then, we schedule the rest of the bursts using the GOL [30].
GOL traverses the intervals stored in the scheduler’s list
sequentially, sorted in the order of their arrival time. In this
way, bursts are scheduled in a greedy fashion and there is no
backtracking. The basic algorithmic steps of GOL that output
a solution for the ISMA problem in O(n×k) time are as follows.

1. Empty the set S, which corresponds to the set of scheduled
intervals.

2. Sequentially consider the intervals, stored in the sched-
uler’s ordered list, in the order of their arrival times.

3. Add the next interval to S. If there is no available
wavelength to accommodate it, remove from S the interval
with the latest ending time.

Interestingly, the solution output by GOL is very close to
the optimal solution for the ISMA problem. The authors in [30]
showed that GOL outputs a schedule that is only k − 1 jobs
off the theoretical optimum in the worst case, where k is
the number of wavelengths, independent of the number n of
scheduled bursts.

C. Correction Parameter

Since batch burst-level resource reservations over the
end-to-end path are based on the predicted burst size, there is
a possibility of overestimation or underestimation of the actual
burst size. An overestimation wastes an amount of resources,
while an underestimation can result in an insufficient resource
reservation and result in dropped bursts. The probability of
underestimation in predictive reservation protocols is usually
compensated with a correction parameter δ, which is added
to the predicted value L̃ and thus incurs a percentage of
bandwidth wastage. There is an obvious trade-off in the
selection of the correction parameter, between minimizing the
underestimation probability and increasing the bandwidth
cost. As shown in [8], the probability Ps that the predicted
burst size exceeds the real burst size, for Q(.) the Q-function
and e(k) the prediction error distribution, is

Ps = P (e(k)< d)=
∫ δ

−∞
f (e(k))de(k). (22)

Assuming that the error distribution e(k) resembles white
noise, i.e., zero-mean Gaussian distribution with standard
deviation σ, we obtain

Ps = 1p
2π ·σ

∫ δ

−∞
e
−e2(k)

2σ2 de(k)= 1−Q
(
δ

σ

)
. (23)

It can be seen from Eq. (23) that, by choosing the parameter
δ to be a multiple of the root mean square error (RMSE)
of the prediction error, δ = a · σ, we can explicitly bound
the underestimation probability. For example, for α = 2, the
underestimation probability becomes 1−Ps =Q(2)= 5%.
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VII. PERFORMANCE EVALUATION

In this section, we evaluate the proposed TCP-specific
prediction mechanism, as well as the proposed predictive
reservation protocol using the ns-2 simulation platform. In the
first set of experiments, the TCP flow profiler as a prediction
mechanism in OBS networks is evaluated using a simple
three-node topology. In the second set of experiments, we
evaluate the proposed predictive reservation protocol over
the NSF network topology to disclose the performance gains
obtained from the TCP prediction mechanism.

A. Evaluation of the Traffic Predictor

For evaluating the proposed TCP-specific profiling and
prediction mechanism a simple three-node network topology
was modeled, which consists of two edge nodes and one core
node. A timer-based burst assembly scheme was implemented
at the edge nodes with a time threshold (Tbat) of 3 ms,
while a JET signaling scheme was employed for one-way
resource reservations. The network round trip time was set to
15 ms, while all clients had a uniformly selected access rate
of 20 Mpbs, 50 Mpbs and 100 Mpbs. With respect to network
traffic, a representative scenario of typical Internet workloads
was modeled, which consists of a traffic mix of short-lived
connection requests with a mean size of 50 kB, and long-lived
file transfers with sizes drawn from a Pareto distribution,
with an average of 3 MB and an index parameter of 1.6.
Short-lived traffic was generated with packmime HTTP 1.1
traffic generator [31], so as to model interactive web requests.

The flow profiler proposed in this work was implemented
as a separate ns-2 module and integrated in the edge nodes’
burst assembly units. The flow profiler updates the active
flow histogram in real time, assigning sampled flows to the
corresponding histogram bins. Figure 3 displays the output of
the flow histogram over time for a snapshot of the simulation
cycle, in the form of number of flows assigned to bins 1 to
4. The increases/decreases in the arrival rate can be clearly
seen, propagating from bin 1 to bin 4, with a small lag that
corresponds to the RTT. At the same time, the flow congestion
window doubles per RTT, until the flow reaches a steady
state (or it concludes its transmission). This lag is exploited
by the proposed scheme to perform short-term predictions (in
the order of a few RTTs). As expected, a percentage of flows
(depending on the flow size density function) will conclude
before being assigned to the next bin, and thus flow population
decreases when moving from bin 1 to bin 4. In particular, bin 1
has on average 420 active flows, while bin 4 has only 200.

At the beginning of each prediction interval, the average
TCP throughput of active flows was predicted, based on flow
statistics gathered by the profiler. This provides an estimate
of the expected burst size for the next prediction interval,
which was compared to the actual burst size. Figure 4 displays
the aggregated throughput of TCP flows compared with the
predicted value in a snapshot of the simulation cycle, for
prediction intervals of 1, 2, and 4 times the RTT. From Fig. 4,
it can be seen that the predicted values closely follow the true
one of the aggregated throughput, while they converge quickly
enough to meet the changes in the flow arrival rate. It is
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evident that the lag in the convergence time is proportional
to the interval length, which can cause a high variance for long
time intervals (i.e., 4 times the RTT) especially when a sudden
change in the arrival rate occurs. Thus, the best performance
is obtained with the shortest prediction interval, that of 1 RTT.

For evaluating the accuracy of the proposed burst predic-
tion scheme for different prediction intervals, the relative
prediction error CDF (see Fig. 5) was calculated. It must be
noted here that the predicted burst size is calculated once at
the beginning of each prediction interval, and then assumed
constant. Thus, even for the smallest prediction interval of
1 RTT, we expect a degree of variability when predicting burst
sizes, due to the sub-RTT burstiness caused by TCP protocol
dynamics. Our analysis shows that the relative prediction error
for the 95% of the bursts is less than 8%, for a prediction
interval of 1 RTT. For longer prediction intervals (>2 RTTs)
there is an increase in the burst prediction error up to 10%.

Finally, we evaluated the effect of the sampling rate on burst
prediction accuracy by compiling a table (Table I) of the value of
the coefficient of variation (CoV) for different sampling periods
N = {2,5,10,20} and different prediction intervals. As expected,
a smaller sampling rate leads to lower prediction accuracy, due
to the loss of information incurred by traffic sampling. It must
be noted here that our traffic profile constitutes a scaled-down
version of a typical Internet workload, which would consist of
millions instead of thousands of flows. This explains the small
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TABLE I
COEFFICIENT OF VARIATION (COV) FOR DIFFERENT

PREDICTION INTERVALS AND SAMPLING RATES

N = 2 N = 5 N = 10 N = 20

1RTT 0.023 0.041 0.07 0.11
2RTT 0.038 0.05 0.076 0.11
4RTT 0.064 0.073 0.094 0.13

sampling periods used in our experiments, which were again
2–3 orders of magnitude smaller than the original.Q10

B. Evaluation of the Predictive Reservation Protocol

The second set of experiments was performed on the
14-node NSFnet topology, for evaluating the performance of
the proposed predictive reservation protocol in a real-world
network topology. As shown in the previous set of experiments,
the selection of the prediction interval has a significant effect
in prediction accuracy, with the best performance results
obtained with a value equal to the path RTT. In this set of
experiments, we consider the prediction interval set equal to
the path RTT for each source–destination pair. This means that
different prediction intervals are employed for the different
source–destination pairs. In what follows, our goal is to explore
the performance gains of the proposed scheme in terms of burst
loss ratio for different sampling rates. In our experiments,
we considered four wavelengths per link with full wavelength
conversion capability, at 10 Gbps capacity. The traffic profile
used was a mix of short-lived web requests generated with
packmime tool that accounted for 20% of bytes transmitted
and a set of long-lived file transfers that accounted for 80%
of bytes transmitted. File transfer requests were initiated
among all source–destination pairs in the network, with file
sizes drawn from a Pareto distribution with an average of
3 MB. What is more, the request interarrival times follow an
exponential distribution, whose mean value is determined by
the network load. It must be noted here that the multiplexing
of Pareto traffic flows is expected to yield self-similar traffic,
whose Hurst parameter H (a metric of traffic burstiness) is
determined by the selection of the Pareto shape parameter.
Simulation experiments were set to 150 s that correspond to
up to 50 000 generated bursts (depending on the traffic load)
with a 3 ms timer. All results were obtained as average values
of three independent runs.
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Fig. 6. (Color online) Burst loss ratio for different α coefficient of
the correction parameter δ, for a constant 0.7 load and 0.7 Hurst
parameter.

A correction parameter δ, as described in the previous
section, is added in the predicted burst length to alleviate
the predictor’s underestimation probability. In our first exper-
iment, we evaluated the effect of the correction parameter,
when varying the α coefficient, on the performance of the
reservation protocol, keeping the input load constant. Figure 6
displays the burst loss ratio versus α coefficient for different
sampling ratios. It can be seen that α = 1 is the value that
better balances losses, due to burst length underestimations
and wasted capacity due to increased resource reservations.
For α> 1, the bandwidth wastage overshadows the gains of the
decreased underestimation probability. Thus, in what follows
we consider δ = σ to be the correction parameter of choice,
where σ is the RMSE of the burst prediction. It is worth noting
here that the expected degree of bandwidth wastage in the
network can be quantified with the CoV metric (see Table I),
which is defined as the ratio of the RMSE to the mean burst
size. For example, for a CoV of 0.07, the percentage of burst
overestimation (equivalently percentage of bandwidth waste)
is 7%.

In the next experiment, we compare the performance of
the proposed reservation protocol with the standard JET
reservation protocol. The performance evaluation (see Fig. 7)
is based on the burst loss ratio for different network loads and
sampling periods. We used the LAUC-VF scheduling algorithm
with JET reservation protocol and GOL scheduling with the
proposed predictive reservation protocol. It must be noted here
that both reservation protocols use one-way signaling and
online scheduling algorithms. The performance enhancements
achieved with the proposed reservation protocol are due to the
efficient channel scheduling facilitated by the predictive batch
reservation of resources, without increasing the edge delay. To
further evaluate the effectiveness of the proposed protocol, it is
also compared with the AS optimal scheduling algorithm solely
for the case of N = 2. Q11

From Fig. 7, it can be seen that the proposed reservation
protocol can achieve significant performance enhancements
compared to the standard JET protocol with LAUC signaling.
The performance gains are affected by the sampling period
used, but, even with N = 20, the gain in burst loss ratio can
be clearly seen. Further, the use of an optimal scheduling
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Fig. 7. (Color online) Burst loss ratio versus load comparison of
proposed reservation protocol and JET, with different sampling periods
N and scheduling algorithms. The Hurst parameter was kept constant
at H = 0.7.

algorithm (marked as OPT in Fig. 7) reveals only a marginal
decrease in burst loss ratio. This confirms the effectiveness
of the proposed predictive resource reservation scheme that
uses a TCP-specific profiling mechanism and a greedy online
scheduling algorithm, at a fraction of the computation time.
In Fig. 7, load corresponds to the normalized amount of
traffic generated per node, which is a fraction of the link
capacity (in our simulations it varies from 0.2 to 0.9). Burst
loss ratios at lower loads are not reported due to the low
confidence of measurements (a few losses per thousands of
bursts transmitted). The accuracy of the measured burst loss
ratios can be derived from Eq. (4) using W = 3×50 000, since
three independent runs were performed per simulation cycle
and 50 000 bursts were generated in each one of them.

Finally, we evaluated the effect of traffic burstiness on
the predictive protocol performance. By varying the shape
parameter of the Pareto process that outputs the burst
sizes, we were able to generate traffic with a varying
Hurst parameter. The performance of the JET protocol with
LAUC-VF scheduling was also measured for reference. As the
Hurst parameter increases, traffic by definition becomes more
bursty and unpredictable. This can undermine our assumption
of constant burst sizes per prediction interval and adversely
affect our protocol’s performance. Indeed, from Fig. 8, it can be
seen that the difficulty of predicting burst sizes in very bursty
traffic (when H → 1) has a negative impact on the burst loss
ratio, especially for small sampling ratios. Due to the high
prediction error, the performance continuously deteriorates,
but in all cases it performs better than JET with LAUC-VF.

In particular, for the most common Hurst parameters
(i.e., H ≤ 0.75), the proposed reservation protocol clearly
outperforms LAUC-VF.

VIII. CONCLUSIONS

In this paper, a TCP-specific profiling and prediction scheme
is proposed, suitable for enhancing the performance of TCP
transmission over OBS networks. The scheme relies on flow
statistics, estimated by a flow profiler to perform running
online estimations of parameters such as the burst loss ratio
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Fig. 8. (Color online) Burst loss ratio versus Hurst parameter for
predictive reservation and JET. We kept the load constant, at 0.7.

and number of active flows as well as other flow-level statistics
such as segment-per-burst distribution and flow RTT. These
are then used to estimate the aggregated TCP throughput and
the corresponding burst sizes for time intervals relative to the
RTT.

Performance evaluation results have shown that the
proposed mechanism adequately profiles flow dynamics and
estimates burst sizes at sub-RTT time intervals with an error
of less than 10% for the majority of the bursts transmitted. The
performance gains in an one-way OBS network were shown
using a modified resource reservation protocol that reserves
resources based on the burst length predictions for all the
bursts within a prediction interval. The gain in burst loss ratio
even for a low sampling ratio is significant.
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