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Abstract— In this paper, we present the architectural design of 
optical burst-buffers that can truly emulate input queuing and 
accommodate asynchronous burst operation. The architectural 
design uses wavelength converters and fixed feed-forward delay 
lines that are combined to form either a multiple-input buffer or 
a shared buffer. Both schemes are modular, allowing the 
logarithmic expansion of buffer size with the number of 
switching elements (wavelength converters). 

Optical burst switching; optical buffers; input queuing; 
wavelength converters; programmable delay. 

I.  INTRODUCTION  
Optical buffering is an important functionality in optical 

burst-switched networks. It allows the temporal storing of data 
bursts to resolve contention for the switch outputs. Various 
solutions have been proposed up to including programmable 
delay lines [1] and optoelectronic conversion [2]. Electronic 
buffering has been extensively utilized in currently installed 
optical networks at a great cost and complexity and is limited 
by the electronic processing speeds and the relative slow O/E 
and E/O conversion times. On the other hand, programmable 
delay lines have been extensively used to form feed-forward or 
re-circulating schemes, employing in addition wavelength 
conversion to enhance buffering capabilities [3], [4]. Most 
schemes, however, assume slotted operation that requires 
complex scheduling algorithms and thus are not suitable for 
asynchronous optical burst switching.   

In particular, feedback loops theoretically provide infinite 
storage time, but they suffer from noise accumulation and 
OSNR degradation. Further, they require that the length of the 
feedback loop matches exactly the burst duration in order to 
avoid loss of synchronization and that a large number of them 
is used to keep the blocking probability small. In contrast, feed-
forward delay line buffers are easier to implement, since the 
difference in the length of optical paths has to match a segment 
of the burst duration (timeslot). Moreover, even though feed-
forward delay line architectures allow for short buffering times, 
recent studies indicate that statistically multiplexed optical 
networks will require only minimal buffering [5], provided 
some traffic engineering  is performed.  

For these reasons, feed-forward delay line buffer 
architectures are a more practical solution for implementing 
limited optical buffering in burst switched networks. Within 
this context, we present in this communication an optical burst 

buffer architecture that is based on the feed-forward-delay-line 
concept that can truly emulate input queuing and accommodate 
asynchronous burst operation. The architectural design uses 
wavelength converters and fixed length delay lines to internally 
route data. These are combined together to form either a 
multiple-input buffer design, where a separate input buffer is 
employed per input port, or a shared buffer design, where the 
same optical buffer is shared by all input ports. The latter 
significantly decreases the individual number of fiber delays 
needed. Both schemes are modular in the sense that buffer size 
increases logarithmically with the number of programmable 
delays. Moreover, as we show later on, the use of multiple 
wavelengths to route internally data bursts minimizes the 
number of delay stages needed and, thus, the number of active 
devices. In our analysis, we have assumed a wavelength tuning 
range of w. The rest of the paper is organized as follows: in 
Section II the multiple-input buffer design that consists of 
parallel Time-Slot-Interchangers (TSIs) and emulates input 
queuing is presented. In Section III we present the shared 
buffer design that emulates distributed buffering among all 
incoming / outgoing links of the optical switch. Finally, 
Section IV concludes the paper. 

II. MULTIPLE-INPUT BUFFER ARCHITECTURE 
In the current section we discuss the architecture of a feed-

forward buffer that is capable of storing on-the-fly optical 
bursts that arrive at its inputs. Storage is accomplished by 
delaying the bursts and variable storage times are feasible by 
introducing programmable delay elements inside the buffer. To 
facilitate our analysis, we assume that time is divided in time 
frames, and bursts are confined within the limits of the time 
frame they have arrived. We assume that the time frame 
contains T timeslots and that each burst asynchronously 
occupies a number of consecutive timeslots. Under this scheme 
providing variable storage time for the bursts is readily 
translated to interchanging timeslots. As a result the buffer is 
equivalent, in terms of functionality, to k parallel Time-Slot-
Interchangers (TSIs), one per input port of the buffer, as in Fig. 
1(a). Each TSI constitutes an input buffer of size T and consists 
of s serially connected programmable delay stages, as shown in 
Fig. 1(b). The architecture takes advantage of the wavelength 
parallelism that WDM offers, with a goal to minimize the 
number of serially connected stages, and consequently the 
hardware cost. A tunable wavelength converter (TWC), which 
is capable of providing w separate wavelengths at its output, is 
deployed at the input of the respective delay stage. The TWC 
assigns the bursts to wavelengths based on the delay line that 
the bursts must access in the delay bank. Mapping between 
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wavelengths and delay lines is achieved by means of a passive 
wavelength demultiplexer, while a wavelength multiplexer 
feeds the delayed bursts to the next stage. The delays D(i,j) that 
are introduced at each stage will be derived from the space-
time graph of the input-buffer architecture [6] in the subsection 
that follows. 

A. Formation of the space-time graph 
The space-time graph that corresponds to the first stage of 

the TSI (Stage 0) is shown in Fig. 2. As discussed in [6], the 
space-time graph of the input-buffer consists of nodes located 
at columns and rows. Columns i and i+1 represent the inputs 
and outputs, respectively, of input-buffer stage i, while rows 
account for the timeslots. Nodes that are located at the input of 
stage i connect to nodes at the stage output with time 
transitions, which are presented as straight lines on the space-
time graph. Time transitions inside the input-buffer stage i 
correspond to the burst accessing a delay line, and as a result 
time transitions may not access output nodes that are located at 
previous timeslots.  

Our goal is to select the time transitions, or equivalently the 
delay times D(i,j), at each stage so as to construct a logn-Benes 
interconnection network on the space-time graph. The purpose 
of constructing the logn-Benes network is two-fold: the 
network requires a minimum number of serially connected 
stages that equals  

2 1 2 log 1ns m T= ⋅ − = ⋅ −⎡ ⎤⎢ ⎥                                           (1) 

for a given number T of timeslot per time frame, where n is the 
logn-Benes crossbar size. The network is also re-arrangably 
non-blocking, therefore the input-buffer is capable of switching 
without internal collisions. Eq. (1) shows that by constructing 
the logn-Benes network, one can achieve a drastic reduction in 
the number of stages, as compared to previously reported work 
that was based on log2-Benes networks [7], [8]. Furthermore, 
finding a collision free path within the Benes network is a well 
studied problem [9]. 

The building blocks of the logn-Benes network are n x n 
crossbar switches, and thus the first step in constructing it is to 

determine the size of the crossbars. The crossbars are formed 
out of time transitions on the space-time graph, as is shown in 
Fig. 2. Since only downward time transitions are allowed at the 
space-time graph, the output timeslots that are available to all n 
input timeslots are limited to w-n+1. Since the inputs of the 
crossbar equal its outputs, we find that 

11
2

wn w n n +⎢ ⎥= − + ⇔ = ⎢ ⎥⎣ ⎦
                                          (2) 

with x⎢ ⎥⎣ ⎦ denoting the integer part of x. As a result, 
approximately 50% of the available wavelengths contribute to 
the formation of the crossbars that comprise the logn-Benes, 
even though all available wavelengths are required to route 
packets inside the buffer. 

The second step is to determine the time transitions that 
construct the logn -Benes network, and the process is shown in 
Fig. 3(a) for the first and second stage of the input-buffer, as 
well as in Fig. 3(b)-(c) where the network of Fig. 3(a) is 
transformed to a standard representation. The construction of 
the logn-Benes network requires that at each stage i, the 
crossbars are formed between timeslots that are located ni 
positions apart, as is illustrated in the equivalent network 
representations of Fig. 3(b)-(c). This corresponds to setting the 
switch time delays, in timeslots, equal to [7]: 

 ( , ) ,    0, ..., 1,    0, ..., 1.iD i j j n i m j w= ⋅ = − = −         (3) 

The delays account for all time transitions on the space-time 
graph, even though only n time transitions per timeslot node 
contribute to the formation of the virtual crossbars. The 
remaining   inactive transitions introduce a constant delay after 
which the output time frame commences (white squares in Fig. 
3(a)). At the output of each stage, the delay equals  

( )1 ,    0, ..., 1i
i n n i m∆ = ⋅ − = −                  (4) 

timeslots and as a result the total delay that the bursts 
experience when traversing the buffer is 

( ) ( )
1 2

0 0
1 1 2

m m
i i

i i

Tn n n n T
n

− −

= =

∆ = ⋅ − + ⋅ − = + −∑ ∑               (5) 

timeslots. Eq. (5) may be viewed upon as constant storage 
latency introduced by the buffer. 

 
Figure 2. Derivation of the crossbar size on the space-time graph.  

 
 

Figure 1. (a) The multiple-input-buffer architecture. (b) The structure of each 
stage in the input-buffer. λ-conv is the tunable wavelength converter and λ-
MUX/DEMUX are the wavelength multi- and demultiplexers.  

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

2284



  

B. Asynchronous operation in an OBS node 
The proposed buffer may be cascaded by a space switch to 

form the switching core of an OBS node [8]. Even though the 
logn-Benes interconnection network ensures that there are no 
collisions inside the TSIs, collisions may still occur at the 
outputs of the space switch if two or more bursts require 
accessing the same switch output at the same time. Losses are 
avoided by ensuring that the respective timeslots do not 
coincide at the space switch, and this is systematically achieved 
by means of the scheduling algorithm that we illustrate in Fig. 
4. According to the scheduling algorithm, we partition the time 
frame into k successive sub-frames of equal duration. We then 
label the sub-frames at a buffer output p with a (p-1)-times 
cyclic shift of {1,2,…,k} and assign input timeslots that head 
for a switch output q to the respective output sub-frame. Since 
sub-frame q never occurs simultaneously at two buffer outputs, 
losses are avoided provided that the total duration of bursts   
(measured in timeslots) that arrive at buffer input p and are 
destined for switch output q is limited by 

,     1 , .pq
Td p q k
k

≤ ≤ ≤                         (6) 

After mapping the timeslots at the inputs to timeslots at the 
outputs of the buffers, it is necessary to determine the delays 
that have to be introduced to the content of the input timeslots 
so as to appear at the respective assigned timeslots at the output 
of the buffer. This is equivalent to routing the timeslots on the 
logn-Benes interconnection network of Fig. 3 and is achieved 
by means of a parallel Benes routing algorithm. The algorithm 
is an extension of a low complexity ( )2log TΟ  parallel 
routing algorithm on a binary Benes network [9], which 
involves setting the state of the outermost crossbars (at stages 0 
and s-1) of the Benes network after solving permutation vector 

equations. The outermost crossbars are then omitted, and the 
remaining network is partitioned into a number of Benes sub-
networks of reduced size. The algorithm is recursively applied 
on the resulting sub-networks until the state of all crossbars in 
the networks is set. An example of the routing algorithm is 
detailed in the following subsection.  

C. Benes routing in the logn-Benes network 
A routing example for the logn-Benes network of Fig. 3 is 

illustrated in Fig. 5 for n = 3 and T = 9. The timeslots at the 
input of the buffer (stage 0) are assigned successive n-ary 
values, and the respective input permutation vector is formed. 
The permutation vector that corresponds to the output of the 
buffer (stage s-1) is formed in a similar fashion, after taking 
into consideration which output is assigned to each input 
timeslot. In the example of Fig. 5 the input and output 
permutation vectors are 

( )
( )
00 01 02 10 11 12 20 21 22

02 21 22 20 00 11 01 10 12 .
in

out

π

π

=

=
    (7) 

We first focus on the input permutation vector. After exiting 
stage 0 on the space-time graph, the input permutation vector 
becomes 

( )0 8 7 6 5 4 3 2 1 00 0 0 1 1 1 2 2 2 .a a a a a a a a aπ =             
               (8) 

This corresponds to time transitions for which αi denote the 
output nodes that have been accessed. In a similar fashion, the 
output permutation vector at the input of stage s is 

( )2 2 7 8 6 0 4 1 3 50 2 2 2 0 1 0 1 1b b b b b b b b bπ =  (9) 

with bi referring the input nodes that have been accessed by the 
inverse time transitions. In Eq. (9), bi are assigned to rows 
according the output permutation vector, due to the symmetry 
of the logn-Benes network. Moreover, the symmetry of the 
network imposes that αi and bi that are located in a common 
row are equal, and as a result T equations that correlate αi and 
bi are derived. The equations are solved after taking into 
consideration that αi (and bi) satisfy  

{ }, ,    , 0,1, ..., 1m n i m n ja a i j i j n⋅ + ⋅ +≠ ≠ ∈ −         (10) 

so that no collisions occur inside the crossbars. Following (10), 
the solution to (8) and (9) is calculated as 

 
 

Figure 4. Timeslot assignment at the multiple-input buffer architecture. 

 

Figure 3. Formation of the logn-Benes network on the space-time graph.  
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( )
( )

0

2

02 01 00 12 10 11 21 20 22

02 21 20 22 00 11 01 10 12 .

π

π

=

=
    (11) 

After solving the equations for the outermost stages of the 
logn-Benes network, we remove the aforementioned stages and 
divide the remaining network into three (n in general) sub-
networks. The permutation vectors of each sub-network are 
derived from (11) after grouping together the vector elements 
that have a common least significant symbol 

( ) ( )
( ) ( )
( ) ( )

0 0

1 1

2 2

0 1 2 2 0 1

0 1 2 2 1 0

0 1 2 0 2 1 .

in out

in out

in out

π π

π π

π π

= → =

= → =

= → =

            (12) 

No further permutation vectors have to be evaluated for the 
specific example, since the permutation vectors of (11) and 
(12) suffice to define the state of the crossbars at all stages. The 
state of a crossbar at stage l is set after isolating the 
permutation vector elements that correspond to the specific 
crossbar and taking into account their least significant symbols. 
We assume that the aforementioned symbols form the reduced 
permutations vectors ρl

in and ρl
out at the input and output of 

each stage; for instance these are 

( )
( )

 
0

0

0 1 2 0 1 2 0 1 2

2 1 0 2 0 1 1 0 2

in

out

ρ

ρ

=

=
            (13) 

in our example. It is straightforward to verify from Fig. 3(a) 
that routing inside the logn-Benes network corresponds to 
setting the delays at each stage equal to 

( ) ,    0out in l
l l l ld n l sρ ρ= ∆ + − ⋅ ≤ <                     (14) 

where ∆l is given by (4). This is feasible by setting the 
wavelengths of the respective wavelength converters equal to  

,    0 .out in
l l lw n l sρ ρ= + − ≤ <                     (15) 

III. SHARED BUFFER ARCHITECTURE 
In the previous section we discussed a buffering 

architecture that involves deploying one buffer per input. The 
architecture is optimal as far as the number of delay stages, but 
it requires the traffic that arrives at the buffer to be equally 
distributed among its inputs, according to (6). In the current 
section we discuss a shared-buffer architecture that requires 
less strict traffic conditions than (6) for lossless operation. The 
proposed design, which is shown in Fig. 6(a), consists of 
serially connected delay stages that are accessible by all input 

ports, as detailed in Fig. 6(b). At each delay stage, k parallel 
wavelength converters assign the incoming bursts to 
wavelengths that correspond to a pair of delay lines and output 
ports. The delay lines and output ports are accessed by the 
bursts through all-passive space switches. Similar to Section II, 
our goal is to define the delays D(i,j) that are introduced at each 
stage so that an optimal interconnection network is constructed 
on the space-time graph. 

A. Formation of the space-time graph 
The space-time graph of the shared buffer architecture is 

illustrated in Fig. 7. In contrast to the space-time graph we 
discussed in Section II, each timeslot node in the space-time 
graph of the current architecture includes k separate space 
nodes that correspond to the delay stage inputs and outputs, as 
illustrated at the inset of Fig. 7. All transitions between the 
input and output space nodes of a delay stage are valid within a 
timeslot, since all outputs of stage may be accessed by any 
stage input in Fig. 6(b). Time transitions are limited only to 
nodes that correspond to the current timeslot or future ones. For 
the rest of this section we consider only time transitions and 
timeslot nodes on the space-time graph, so as to simplify the 
illustration of our analysis. However, during the time 
transitions between input and output timeslot nodes, we assume 
that all k space input and output nodes that lie within the 
respective timeslots are connected with space transitions. This 
is equivalent to constructing the interconnection network on the 
time transitions of the space-time graph, and afterwards 
expanding the crossbars and connections of the resulting 
network by a factor of k. 

Within this context, our goal is to construct a logd-Benes 
interconnection network on the time transitions of the space-
time graph that corresponds to the shared buffer architecture. 
The procedure is quite similar to that described in the previous 
section: we first determine the size d x d of the elementary 
crossbar and based upon this, we form the logd-Benes network 
on the space-time graph. The number wa of timeslots on the 
space-time graph that are fully accessed at the output of the 
current stage equals the wavelength tunability w normalized by 

 
Figure 6. (a) The shared buffer architecture. (b) At the respective stages, each 
wavelength is assigned to a pair of delays and output ports. 

 
 

Figure 5. Routing in the logn-Benes network. 
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the number of ports k 

a
ww
k

⎢ ⎥= ⎢ ⎥⎣ ⎦
                         (16) 

and as a result, the size of the crossbars is calculated as 

1
1 .

2 2
a

w
w kd

⎡ ⎤⎢ ⎥ +⎢ ⎥⎢ ⎥+⎢ ⎥ ⎣ ⎦⎢ ⎥= =⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

            (17) 

The logd-Benes network is formed as in Fig. 8(a)-(c), by setting 
the delays equal to  

( , ) ,    0, ..., 1,    0, ..., 1.i
aD i j j d i m j w= ⋅ = − = −      (18) 

Similar to the multiple-input buffer design, only d time 
transitions are utilized per timeslot, and as a result the bursts 
experience a storage latency that is calculated in timeslots as 

( ) ( )
1 2

0 0
1 1 2.

m m
i i

i i

Td d d d T
d

− −

= =

∆ = ⋅ − + ⋅ − = + −∑ ∑          (19) 

The fully expanded network that includes space transitions 
is derived in Fig. 8(c) after taking into consideration that the 
size of the crossbars becomes n k d= ⋅ and that each time 
transition corresponds to k space transitions. The fully 
expanded network is re-arrangably non-blocking and thus the 
shared buffer architecture performs buffering without internal 
losses. The number of delay stages that are required is given by  

2 1 2 log 1.ds m T= ⋅ − = ⋅ −⎡ ⎤⎢ ⎥               (20) 

The number of delayed stages is therefore not optimal, and this 
is because we have constructed a logd-Benes network on the 
time transitions instead of a logn-Benes networks on both time 
and space transitions. However, this drawback of the shared 
buffer architecture is balanced by the fact that it requires less 
strict traffic conditions to achieve lossless operation, as we 
show in the following subsection. 

  

B. Asynchronous operation in an OBS node 
The shared buffering architecture may be readily deployed 

in an OBS node without cascading the space switch that is 
required by the multiple-input buffer, since buffering and 
output port assignment are performed independently. 
Moreover, the re-arrangably, non-blocking property of the 
expanded interconnection graph of Fig. 8(c) ensures that no 
burst collisions take place inside the shared buffer, provided 
that the total traffic that arrives to all buffer inputs and heads 
for a specific buffer output does not exceed T timeslots within a 
time frame. This is a looser traffic condition than (6), since 
incoming traffic does not have to be equally distributed among 
all buffer inputs. 

Bursts that arrive within the same time frame are placed on 
a common outgoing frame, which commences after ∆ 
timeslots. The timeslots that the bursts occupy at the outgoing 
time frame are assigned according to a modification of the 
packing rule [8]. The modified packing rule is illustrated in 
Fig. 9, according to which, bursts heading for a common 
outgoing link, and thus the respective timeslots they occupy, 
are logically grouped together, and the timeslots that belong to 
the same group are given ranks. A rank of a timeslot equals r, if 
it is the r-th timeslot that has arrived at incoming link p and 
heads for outgoing link q. A timeslot at the incoming time 
frame with rank r will be mapped at the output time frame to 
timeslot 

{ }
1

,
1

1,    0, ..., 1 ,
p

l q
l

y n r y T
−

=

= + − ∈ −∑          (21) 

where nl,q is the total duration of bursts, in timeslots, between 
incoming link l and outgoing link q. After timeslot assignment, 

 
Figure 8.  Formation of the logd-Benes network on the time transitions of the 
space-time graph. 

 

Figure 7. Derivation of the elementary crossbar on the space-time graph. 
Each node of the space-time graph representing timeslots is expanded to k 
separate nodes that corresponds to the input/output ports.  
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a modified parallel Benes routing algorithm sets the delays that 
timeslots experience inside the buffer stages, similar to Section 
II. We detail an example in the expanded logd-Benes network 
of Fig. 8 in the next subsection. 

C. Benes routing for the logd-Benes network 
A routing example for n = 4 (k = 2, d = 2) and T = 4 in the 

logd-Benes network is detailed in Fig. 10. The input and output 
permutation vectors are given by 

( )
( )

 00 01 02 03 10 11 12 13

00 01 03 11 02 10 12 13 .
in

out

π

π

=

=
           (22) 

The permutation vectors at the output of stage 0 and the input 
of stage s-1 are calculated as 

( )
( )

0 0 1 2 3 4 5 6 7

2 0 1 3 5 2 4 6 7

 0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 1 .

a a a a a a a a

b b b b b b b b

π

π

=

=
(23) 

Eq. (23) is solved for ai and bi using the symmetry properties of 
the expanded logd-Benes network, after taking into account 
(10). The solution is facilitated, however, by the fact that 
crossbars are connected with groups of k-parallel lines in the 
expanded network. As a result, ai (and bi) that correspond to 
the same k-parallel line group may be interchanged, since they 
originate from and head for the same crossbar. Thus 

{ }, ,    , 0,1, ..., 1 .m n i m n ja a i j i j k⋅ + ⋅ +↔ ≠ ∈ −               (24) 

A solution to our example is 

( )
( )

0

2

00 01 02 03 13 12 11 10

00 01 02 13 03 12 11 10 .

π

π

=

=
             (25) 

We then omit the outermost crossbars and divide the resulting 
network into two (d in general) sub-networks. The permutation 
vectors for the new networks are formed after grouping 
together the vector elements which have least significant 
symbols z that are located between  

( ),   1 1 ,    0 .z i k i k i d⎡ ⎤∈ ⋅ + ⋅ − ≤ <⎣ ⎦                      (26) 

In the example of Fig. 10 we find that 

( ) ( )
( ) ( )

0 0

1 1

00 01 11 10 00 01 11 10

02 03 13 12 02 13 03 12
in out

in out

π π

π π

= → =

= → =
   (27) 

Eq. (27) are readily solved after re-numbering the vector 
elements with respect to their order 

( ) ( )
( ) ( )

0 0

1 1

0 1 3 2 0 1 3 2

0 1 3 2 0 3 1 2 .
in out

in out

π π

π π

= → =

= → =
             (28) 

Eq. (25) and (28) define the state of all crossbars in the 
network. Having determined the state of the crossbars, we 
calculate the reduced permutation vectors ρl

in and ρl
out at each 

stage and the respective wavelengths are derived from Eq. (15). 

IV. CONCLUSION 
We have presented the architectural design of two optical 

burst buffers. Both designs use wavelength converters and 
fixed delay lines that are combined to form a multiple-input 
buffer or a shared buffer. The designs are modular, allowing 
for the logarithmic expansion of buffer size with the number of 
switching elements (wavelength converters). Wavelength 
parallelism is used to achieve a significant decrease in the total 
number of delay stages needed, as compared to previous work. 
Furthermore, we have also proposed architecture-specific 
algorithms for providing contention resolution within the 
buffering time, as well as algorithms for scheduling the internal 
wavelengths. 
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Figure 10. Routing in the expanded logd-Benes network.  

 
 

Figure 9. Timeslot assignment in the shared buffer architecture. 
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