Performance Evaluation of an Optical Packet “Scheduling Switch”

Kyriakos Vlachos, Kyriaki Seklou, Emmanuel Varvarigos
Optical Packet Switches Architectures

Several innovative architectures including:

• Switches with recirculating loops
 Startlite Architecture, A. Huang IEEE GLOBECOM 1984

• Staggering Switch

• Switch with Large Optical Buffers (SLOB) architecture
 D. Hunter et al IEEE/OSA J. Lightwave Technol. 1998

• Wavelength Routing Switch – WRS
 M. Renaud et al. IEEE Commun. Mag. 1997

• Broadcast and Select Switch – BSS
 M. Renaud et al. IEEE Commun. Mag. 1997

However, work on new architectural concepts, node’s performance, and intelligent control have lagged behind progress in transmission speeds.
The “Scheduling Switch Architecture”

Concept:

Use a branch of delays to schedule packets in a T size frame and resolve contention.

Each delay branch consist of $2m-1$ delay blocks, where $m = \log T$.

The ith block consists of a three-state (or two 2x2) optical switch and three fiber delay paths, corresponding to delays equal to 0, 2^i and 2^{i+1} slots.

T is assumed to be a power of 2 and corresponds to the maximum number of sequential packets from all incoming links that request the same output and can be served with no contention.
Traffic Assumptions

- We assume that the time axis on a link is divided into slots of equal length and every T slots are virtually grouped to form a frame.

- A packet is an integer number of slots.

- A session is said to have the (n,T) - burstiness property at a node if at most n packets of the session arrive at that node during a frame of size T.

- The frame size T can be viewed as a measure of the traffic burstiness allowed. The larger T is, the less constrained (more bursty) is the incoming traffic allowed to be, and the larger is the flexibility -granularity– in assigning rates to sessions.

- Loss less operation of a scheduling switch network is obtained when

$$
\sum_{i=1}^{k} n_{i,j} \leq T
$$

for all $j \{1,2,..,k \}$ where n_{ij} is the number of packets from input i destined to output j.
Assuming that packets arrive independently at each incoming slot with probability \(p \), the probability of having \(i \) packets arrivals during the \(kT \) slots of the \(k \) incoming frames requesting the same output \(j \), \(j = 1, \ldots, k \), and assuming uniformly distributed destinations is:

\[
P [X = i] = \binom{kt}{i} \cdot \left(\frac{p}{k} \right)^i \cdot \left(1 - \frac{p}{k} \right)^{kT-i}
\]

The packet loss ratio can then be easily calculated as:

\[
PLR = \frac{\sum_{i=T}^{kt} P[X = i] \cdot (i - T)}{p \cdot T}
\]

\[
= \frac{\sum_{i=T}^{kt} \left[\binom{kt}{i} \cdot \left(\frac{p}{k} \right)^i \cdot \left(1 - \frac{p}{k} \right)^{kT-i} \cdot (i - T) \right]}{p \cdot T}
\]

\[
= \frac{\sum_{i=T}^{kt} \left[\frac{kT!}{i!(kT-i)!} \cdot \left(\frac{p}{k} \right)^i \cdot \left(1 - \frac{p}{k} \right)^{kT-i} \cdot (i - T) \right]}{p \cdot T}
\]
For T values higher than 32 and $p < 0.8$ the packet loss ratio is very low.

T values of 32, 64 and 128 can be accomplished with all-optical technologies at low cost and with a low complexity.

Packet loss ratio for (a) $k=2$ and (b) $k=4$ input/output scheduler switch for binomial packet traffic and uniformly distributed destinations.
Packet loss ratio versus T for (a) $k=2$ and (b) $k=4$ and for a utilization $\rho = \{0.1, 0.2, \ldots, 1\}$.

For $\rho=1$, packet loss ratio is $9 \cdot 10^{-3}$ and $11 \cdot 10^{-3}$, when $T=2^{10}$ for $k=2$ and $k=4$ respectively.
Performance Evaluation for Constrained \((n, T)\) Bursty Traffic

We assume that:

- Incoming traffic obeys the \((n, T_{\text{traffic}})\) smoothness property while the Scheduling Switch has been designed for \(T_{\text{switch}} \text{ with } T_{\text{traffic}} \geq T_{\text{switch}}\)

- \(T_{\text{traffic}}\), is an integer multiple of the corresponding \(T_{\text{switch}}\) parameter

- The ratio \(T_{\text{traffic}} / T_{\text{switch}}\) is viewed as an index of the traffic burstiness allowed in the network.

- Assuming that the link utilization is \(p\) then the number of packets \(n\) that may arrive during a frame \(T_{\text{traffic}}\) and request the same outgoing switch port is:

\[
\sum_{i=1}^{k} n_{i,j} = pT_{\text{traffic}} \quad \text{for all outputs } j.
\]

The \(pT_{\text{traffic}}\) packets that arrive per incoming frame and request output \(j\) are evenly distributed within the frame of size \(T_{\text{traffic}}\).
Performance Evaluation for Constrained \((n,T)\) Bursty Traffic

The \(pT_{traffic}\) can arrive in any of the \(\binom{KT_{traffic}}{PT_{traffic}}\) possible combinations.

Thus, the probability of having \(i\) packets within the \(T_{switch}\) first slots \(P_i\) is:

\[
P_i = \binom{KT_{switch}}{i} \cdot \binom{KT_{traffic} - KT_{switch}}{PT_{traffic} - i}
\]

And the corresponding Packet Loss Ratio:

\[
PLR = \sum_{i=1}^{pT_{traffic}} \left(\binom{KT_{switch}}{i} \cdot \binom{KT_{traffic} - KT_{switch}}{PT_{traffic} - i} \right) \cdot (i - T_{switch})
\]

Equation is valid only for \(pT_{traffic} > T_{switch}\), while for \(pT_{traffic} = T_{switch}\) or \(T_{traffic} = T_{switch}\), the packet loss ratio is zero for any utilization factor \(p\).
Performance Evaluation for Constrained \((n,T)\) Bursty Traffic

Packet loss ratio for (a) \(T_{\text{switch}} = 2\) and (b) \(T_{\text{switch}} = 16\), versus the \(T_{\text{traffic}} / T_{\text{switch}}\) ratio for a \(k=2\) and \(k=4\) scheduling switch and a utilization \(p = \{0.25, 0.5, 0.75, 1\}\).

\(T_{\text{traffic}}\) is varied from \(2 \cdot T_{\text{switch}}\) to \(2^{10}\).

Packet loss ratio decreases when \(T_{\text{traffic}} / T_{\text{switch}}\) increases (beyond 2). This is primarily due to the burstiness averaging as a result of the numerous possible packet distributions within a \(T_{\text{traffic}}\) frame.
Performance Evaluation for Pareto traffic

- Packets arrive in bursts (ON periods), which are separated by idle periods (OFF periods).
- ON periods is burst – train of packets with a Pareto distribution. The min. burst size is 1, corresponding to a single packet arrival.
- OFF periods with a min. size of \(b_{\text{off}}\)

Formula we used:

\[
X_{\text{PARETO}} = \frac{b}{x^{1/a}}
\]

where:
- \(x\) is a uniformly distributed value in the range \((0, 1]\),
- \(b\) is the minimum non-zero value of \(X_{\text{PARETO}}\), denoted by \(b_{\text{on}}\) and \(b_{\text{off}}\) for the packet train and idle period respectively and
- \(a\) the tail index or shape parameter of the Pareto distribution.

Especially for computer simulation the \(b_{\text{off}}\) must be defined due to the finite range of \(x\).
Performance Evaluation for Pareto traffic

Starting from:
\[p = \frac{\text{ON}_{\text{period}}}{\text{ON}_{\text{period}} + \text{OFF}_{\text{period}}} \]

and:
\[X_{\text{Pareto}}^{\text{max}} = \frac{b}{x_{\text{min}}^{1/a}} \]

We calculate:
\[E(x) = \int_{b}^{x_{\text{Pareto}}^{\text{max}}} xf(x)dx = \int_{b}^{x_{\text{Pareto}}^{\text{max}}} x \frac{ab^a}{x^{a+1}}dx = \frac{ab}{a-1} \left[1 - x_{\text{min}}^{a-1} \right] \]

and thus:
\[b_{\text{off}} = \frac{a_{\text{off}} - 1}{a_{\text{off}}} \cdot \frac{1 - x_{\text{min}}}{a_{\text{on}} - 1} \cdot \frac{a_{\text{on}} - 1}{a_{\text{off}}} \cdot \left(\frac{1}{p} - 1 \right) \]
Packet loss ratio for (a) k=2 and (b) k=4 versus link utilization for $T \in [2 \ldots 64]$ and $T = 1024$. $a_{ON} = 1.7$, $a_{OFF}= 1.2$.
Simulated setup:

4 edge routers, generating Pareto traffic with load p.
Within ER VQO is implemented.

Scheduling Algorithm: Round Robin for selecting an ER.
FIFO within each ER.

The FIFO property within each ER is relaxed only when equation $\sum_{i=1}^{k} n_{i,j} \leq T$ is violated

The algorithm is designed to minimized holding times and maximize link load (all slots of an outgoing frame are filled)
We have simulated four ERs, each with an input load $p \in [0 \ldots 1]$ and $T \in [T \ldots 1024]$.

Simulations have been carried out for a workload per source value of 1.

Conclusions:

The induced delay is relatively small and that the incoming–outgoing packet process enters its steady state within a few thousand outgoing frames with a worst-case finite holding time.
Thank you!!

Work supported by EU FP6 via the Network of Excellence e-Photon/ONe project