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Abstract

In this paper, we present a self-consistent model of an optically mode-locked semiconductor fiber ring laser. The fiber laser uses a
semiconductor optical amplifier (SOA) as the gain medium, while mode-locking is achieved by its gain modulation, via an external opti-
cal pulsed signal. We solved the model analytically developing a novel technique, where we have assumed double saturation of the SOA
by both the mode-locked and the externally introduced pulsed signal. The study revealed the locus of the laser parameters to achieve
mode-locking. In particular, it was found that SOA gain and energy of the externally introduced signal are two critical parameters that
must simultaneously set properly for exact mode-locking. Another outcome of our analysis is that the study of the chirp parameter
should be carried out keeping the nonlinear terms of the SOA gain. We have also investigated a slightly detuning regime of operation
that revealed a fast change of the mode-locking process.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Optical sources capable of generating ultra-short pulse
trains at high repetition rates [1–3] are key elements for high
speed networks that combine WDM and OTDM transmis-
sion techniques. Active mode-locking is one of the key tech-
niques for the generation of ultra-short, transform-limited
optical pulses and is achieved by the direct modulation of
the optical field during each laser cavity round-trip [4,5]. This
method is particularly important especially when synchroni-
zation between optical and electrical signals is required. At
1.5 lm spectral window, several actively mode-locked fiber
lasers employing erbium-doped fiber as the gain medium
and producing transform-limited picosecond pulses at
multi-GHz rates have been demonstrated [6–16]. The major-
0030-4018/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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ity of these systems use loss modulation by lithium niobate
electro-optic modulators due to their large electro-optic
coefficient and their compact construction on low loss tita-
nium-undiffused waveguides. Unfortunately, lithium nio-
bate modulators are polarization sensitive devices and as a
result, laser sources using lithium niobate modulators either
have to be build from polarization preserving fiber pigtailed
components [13–15] or with complex stabilization feedback
circuits [16–19] or incorporating high-finesse FP filters
[20,21]. Active stabilization techniques have been developed
to continuously monitor and correct the driving frequency or
cavity length for countering the tendency towards instability
of long cavity fiber lasers.

A very promising technique of active mode-locking has
been demonstrated with intracavity SOAs to provide both
gain and modulation in the cavity with the additional advan-
tage that mode-locking can be achieved via XGM modula-
tion from an external optical signal. In particular, actively
mode-locked laser sources, incorporating SOAs, have been
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demonstrated by several research groups [22–26] for the gen-
eration of short optical pulses at various repetition rates. In
these experiments, the SOA was used either as the gain or as
the modulation element in the cavity in combination with an
additional intracavity intensity modulator [9,23,24] or used
to provide both gain and electrically controlled gain modula-
tion [25]. Additionally, SOAs have been also used as the
mode-locking elements providing gain modulation in
Er-doped fiber ring lasers or storage rings [26,27].

In this paper, we present for the first time an accurate self-
consistent model of a novel SOA-based fiber laser. The laser
has been used for short picosecond pulsetrains generation
either under single-wavelength or multiwavelength opera-
tion mode. It uses a single active element, a SOA, to provide
both gain and gain modulation in a fiber cavity via cross-
gain saturation from an external optical pulse train. This
ring laser platform was first demonstrated at 10 GHz [28]
and was extended to 40 GHz single-wavelength operation
[29,30] and 30 GHz multi-wavelength operation [31–33]
exploiting further the nonlinear interaction of the optical
pulses in the semiconductor. The use of a single SOA in
the optical cavity in combination with the optical gain mod-
ulation yields significant performance advantages, as for
example, the ultrafast modulation function, due to the fast
carrier depletion of the SOA [30], the broad wavelength tun-
ability [31], and the short picosecond pulse generation due to
the nonlinear interaction of the optical signals in the SOA
[34].

For modeling the SOA-based laser platform, we devel-
oped a self-consistent model, taking into account the
mode-locked pulse properties and in particular the mode-
locked pulse duration and energy in the SOA gain satura-
tion profile. Albeit, it has been shown, [31–34], that the
energy of the mode-locked pulsetrain is high enough to sat-
urate the SOA, this has not been taken into account in other
developed analytical models. To this end, in the model pre-
sented here, it is assumed that SOA is being saturated by
both the externally introduced optical pulsetrain as well as
from the re-circulating, mode-locked one. The analysis
proved very complex due to the phase inclusion in the pulse
profile and the nonlinearity of the SOA gain. Our study
revealed a unique locus of the laser parameters to achieve
mode-locking. In particular, it was found that SOA gain
and energy of the externally introduced signal are two crit-
ical parameters that must simultaneously set properly for
exact mode-locking. Other models developed for the same
platform, cannot be applied without including phase
changes in the model [35] or including loss modulation as
against to gain modulation [36]. A more recent work
presented in [37] takes into account phase variations but
linearize SOA gain and assumes expansion of the exponen-
tials in the master equation, resulting in a very simplified
model. However, all works presented up to date, disregard
the energy of the mode-locked pulse that may result in
significantly different results.

Furthermore, in this paper, the laser operation under a
slight cavity detuning is investigated. Studying an operation
regime close to the optimum is important, primarily because
it may reveal strong dependencies of various parameters
and in general the system under study may exhibit a com-
pletely different behavior.

The rest of paper is organized as follows. Section 2 pre-
sents the principle of operation of the ring laser and the
theoretical equations that govern its principles modules.
Section 3 presents the laser self-consistent model, while
Section 4 presents in detail the effect of the various physical
parameters on the laser performance.
2. Laser and model description

2.1. Experimental configuration

Active mode-locking is a well-known technique that is
widely used to generate ultra-short optical pulses at high
repetition rates. It is achieved by modulating the loss, the
gain or the phase of a laser. The theoretical treatment of
active mode-locking in the time domain is generally based
on the ‘‘self-consistent profile’’ method, developed by Sieg-
man and Kuizenga [38,39] and Haus [40,41]. Comprehen-
sive descriptions of the pulse formation process in various
actively mode-locked lasers can be found in a number of
studies. The basic approach is based upon the consideration
of a ring laser configuration containing a gain medium and
a modulator, with a signal that propagates in one direction
through the laser. The laser can also incorporate various
additional components that affect the signal. It is assumed
that an optical pulse has formed so that after a large number
of round-trips, the electrical field E can be described as:

EpulseðtÞ ¼ k exp � 1þ ih
2

t
DT

� �2
� �

ð1Þ

where h is the chirp parameter. In our model, we have used
a Gaussian pulse shape. This is a fair approximation. How-
ever, a super Gaussian pulse can also be used to solve the
steady-state equations following our proposed in the pres-
ent paper, step method, keeping the right order terms of the
integrated gain function. In our setup the Gaussian shape
suffices for the theoretical modeling. For simplicity we
define:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U 0Esat

DT

r
ð2Þ

and thus the pulse power is

pinðtÞ ¼ k2 exp � 1

2

t
2DT

� �2
� �

ð3Þ

U0 is the input pulse energy, normalized to the saturation
energy Esat and the pulse width.

The inclusion of a phase in our model is necessary for an
accurate description of the experiment. The appearance of
a phase is due to the known as SPM, self-phase modulation
phenomenon. SOA gain saturation leads to a depletion of
the carrier density which in turn results to nonlinear
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Fig. 1. Schematic diagram of the ring resonator used in the self-consistent
profile model of active mode-locking.
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Fig. 2. Mode external optical pulse. The top figure shows the externally
introduced pulses that modulate SOA gain at fext frequency. The middle
figure displays the SOA gain curve. In particular, the horizontal dotted
line in the gain curve indicate the loss line above which the net gain is
positive enabling the formation of mode-locked pulses. In the middle
figure, we denote by hs and hf the instant SOA gain before and after the
external pulse transition. The bottom figure displays the formed mode-
locked pulses, which are temporally displaced by Ts � DT 0 and the
resulting SOA gain curve. The SOA gain is saturated by the mode-locked
pulse, resulting in a different equilibrium state. In the bottom figure we
denote by hp

in and hext
in the instant SOA gain before the transition of the

mode-locked and the external pulse respectively.
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changes in the refractive index. A careful theoretical study
of the produced chirp and spectral broadening is important
for achieving short and high-power pulse trains. Fig. 1
shows a schematic diagram of the SOA-based ring laser
with the corresponding effects depicted.

In the absence of gain modulation and provided that the
SOA gain exceeds the total cavity loss, the laser generates
CW-radiation. The noise that oscillates in the cavity grad-
ually develops to CW-light under the interplay of the
amplifier and the filter. In actively mode-locked fiber lasers,
the fundamental cavity frequency fr is generally much smal-
ler than the repetition frequency at which the laser is mode-
locked. When the cavity includes a modulator driven at a
frequency fext equal to an integer multiple of fr, the laser
is harmonically mode-locked:

fext � mf r ¼ m
1

T r

¼ m
c

ngl
ð4Þ

where m is an integer, Tr is the cavity round-trip time, l is
the cavity length, c is the speed of light and ng is the cavity
group index. The number of pulses oscillating in the cavity
equals m.

The principle of operation and repetition-frequency mul-
tiplication in our circuit relies on two key factors. The first is
that the fast saturation of the gain of a semiconductor opti-
cal amplifier (SOA) by an externally introduced, optical
pulsed signal is used for gain modulation in a fiber ring laser
and for the generation of stable mode-locked picosecond
pulses. In this instance the externally introduced optical
pulse and the comparatively slow gain recovery of the
SOA define a short temporal gain window within which
the mode-locked pulse is formed.

The second key factor is that by detuning the frequency
fext of the externally introduced pulse train to fext = (m +
1/n)fr, one may obtain an output pulse train at a frequency
n Æ fext, where m is the order of harmonic mode locking of
the ring laser and n is an integer number greater than 1.
To this end, when the repetition rate of the external pulse
train is adjusted to differ by fr/n from a harmonic of the fun-
damental of the ring cavity, the mode-locked pulse becomes
temporally displaced by Text/n on each recirculation
through the ring cavity with respect to its previous position.
Text is the repetition period of the external signal.
Fig. 2 illustrates graphically the mode-locking process
based on the SOA gain modulation by an external pulse.
The mode-locked pulse is formed, after the insertion of
the external pulse, at the time that the slowly recovering
gain of the SOA balances the cavity losses, denoted by
the horizontal dotted line in Fig. 2. As the mode-locked
pulse transits the SOA, its gain depletes again below the
loss line, to recover slowly before the next external or
mode-lock pulse enters it. This mechanism results in a tem-
poral displacement between the external and mode-locked
pulses in the SOA, denoted as Ts � DT 0. With respect to
the multiplication process, the mode-locked pulses after n

times re-circulations, are on average equally amplifies due
to the temporal displacement, resulting in no pulse-to-pulse
pattern distortion. An illustrated figure of the multiplica-
tion process can be found in [29]. The most important
parameters that are crucial in the formation of the mode-
locked pulse for any repetition frequency are mainly the
cavity loss, the pulsewidth, average power of the external
pulsetrain and the small signal gain of the SOA.

2.2. Laser model

In the self-consistent model described in the following
section, we assume that each pulse in the ring laser employs
the same properties, such that we may consider the propa-
gation of a single pulse through the cavity. Each element of
the ring laser in Fig. 1 is described by an operator. In
steady-state operation, a re-circulating pulse satisfies the
following operator equation:
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Eout ¼ bT 3
bT 2
bT 1Epulse ð5Þ

Note that in the model developed we did not take into ac-
count the cavity dispersion primarily because this is negli-
gible due to the short cavity length. Summarizing the
model setup, the operators that hit the pulse are:

Filter: bT 1 ¼ T filter(x) in the frequency domain.

SOA: bT 2 ¼ ehðtÞ1þia
2 in the time domain.

Linear loss: bT 3 ¼ T loss.

In this study, we make no assumption for the operators
of Eq. (5). Therefore in the steady-state equation, we do
not expand the exponential terms in Taylor series, since
this does not constitute a good approximation. Further-
more, it is useful to define the following time intervals:

t1 is the time pulse needs to pass through the filter;
t2 is the time pulse needs to travel from the exit of the filter
to the entrance of the SOA;
t3 is the time pulse needs travel from the exit of the SOA
to the entrance of filter. It is obvious that t3 � optical
length/c.

Thus, the time duration of a cavity round trip is:

T r ¼ t1 þ t2 þ t3 ð6Þ

The proposed SOA-based ring is harmonically mode-
locked, see Eq. (4), up to a detuning small time interval
dT, following the period of the external pulse Text.
Therefore:

T r þ dT ¼ mT ext ð7Þ

Following, we present the detailed expression of the oper-
ators used.
2.2.1. Optical filter
In our model, we have assumed a Gaussian filter with a

frequency domain transfer function given by:

T filterðxÞ ¼ exp �ðx� dxÞ2

2Dx2
g

" #
ð8Þ

where the optical filter bandwidth is

Dxg ¼
1

2
ffiffiffiffiffiffiffiffi
ln 2
p DxFWHM ð9Þ

DxFWHM is the full-width at half-maximum. In the experi-
mental part of our work, we have used optical filters with a
variety of FWHM, from 0.4 to 0.8 nm with a central fre-
quency of 1550 nm. The term dx is the frequency deviation
due to the time dependence phase shift (SPM) of the mode-
locked pulse in the SOA. It is assumed that the filter max-
imum transmission is locked to the frequency peak of the
mode-locked spectrum, which is x � dx.
2.2.2. Linear losses

The linear loss operator is defined as follows:

T loss ¼ exp � L
2

� �
ð10Þ

where L is the losses in one round-trip, which is close to
6 dB.

2.2.3. Semiconductor optical amplifier
Finally, bT 2 represents the amplitude and phase modula-

tion at a frequency xexternal of the external pulses. In order
to calculate operator bT 2, the theory of short pulse propaga-
tion in SOAs is used [42,43]. SOAs have been extensively
studied and modeled in the literature. However, a SOA act-
ing as the gain modulator has not been yet modeled in a
fiber ring laser configuration. In our approach, we have also
included the phase change that the mode-locked pulse expe-
rience through its propagation from the nonlinear medium.
This time dependent phase change result on a phase shift of
the frequency. This is due to cross-phase modulation,
induced by the externally introduced pulsed signal.

A simple and very successful model presented in [42] suf-
fices to describe pulse propagation in a SOA. Starting from
the carrier density (N) rate equation and neglecting carrier
diffusion we reach a rate equation for the gain g,

g ¼ CaðN � N 0Þ ð11Þ
which is,

og
ot
¼ g0 � g

sc

� gjAj2

Esat

ð12Þ

where g0 is the small signal gain defined by

g0 ¼ CaN 0

I
I0

� 1

� �
ð13Þ

with

I0 ¼
qVN 0

sc

ð14Þ

In the above equations, various physical quantities enter.
Their physical meaning together with the associated sym-
bols is presented in Table 1.

|A|2 = pin represents the power of the introduced pulsed
signal. Esat is the saturation energy above that it is assumed
that the SOA is heavily saturated. The saturation energy is
given by

Esat ¼
�hx0r
aint

ð15Þ

where aint is the internal loss of the SOA. r is the mode-
cross-section area of the SOA given by

r ¼ wd
C

ð16Þ

Introducing the function: hðtÞ ¼
R L

0
gðz; tÞdz the rate equa-

tion for the integrated gain is

dh
dt
¼ g0L� h

sc

� pinðtÞ
Esat

½ehðtÞ � 1� ð17Þ



Table 1
Symbols of the various physical quantities of the ring laser model

C the confinement factor
N0 the carrier density required for transparency = 0.9 · 1018 cm�3

sc the spontaneous carrier lifetime
q the electron charge
V the active volume of the SOA
I the injection current and
a the gain coefficient or line width enhancement factor
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We have to solve the above ordinary differential equation
(17) for h(t) given Pin. Assuming that aint� g, the output
power of the pulse is simply the input multiplied by the
exponential of h(t). We are interested to solve the above
equation during the gain saturation regime and the gain
recovery regime for both internal and external pulses.

2.2.3.1. Gain saturation. In this regime, we are neglecting
carrier recovery during the pulse propagation due to
current injection, i.e. width of the pulse smaller than the car-
rier lifetime of the amplifier. Eq. (17) is simplified as follows:

dh
dt
¼ � pinðtÞ

Esat

½ehðtÞ � 1� ð18Þ

where hin = h(�1) and U in ¼
R t
�1 pinðtÞdt is the energy of

the pulse contained in the leading part of the pulse up to t.
Solving equation (18), we obtain:

hðtÞ ¼ � ln½1� ð1� e�hinÞe�
U inðtÞ
Esat � ð19Þ

This function gives the integrated gain in the saturation
regime. It will be used in the following part of the paper
where the steady-state equations will be solved. It is worth
noticing here, that in previous studies, authors either pro-
pose unnecessary preliminary expansions of the integrated
gain into Taylor series, in terms of U inðtÞ

Esat
6 1, or lineariza-

tions of the integrated gain that result in poor approxima-
tions. In what follows, a much more accurate method is
presented in three steps. First Eq. (19) is solved and then
for a certain pulse profile, Uin is calculated. It must be noted
here that Eq. (19) has not been widely used in similar mode-
locked laser models. Then the whole right hand side of Eq.
(19) is expanded in terms of t/DT and finally the system of
the steady-state equations is solved for mode-locking oper-
ation. This method differs from those proposed up to date in
the literature and describes gain saturation accurately.

2.2.3.2. Gain recovery. After the saturation the SOA recov-
ers due to carrier injection. We are assuming that the stim-
ulated recombination is less important in this regime.
Therefore, starting again from Eq. (17) the gain of the
SOA recovers as follows:

dh
dt
¼ g0L� h

sc

ð20Þ

which leads to the following expression:

hðtÞ ¼ ðhf � hsÞe
t

sc þ hs ð21Þ
with hs = g0L and hf = h(t = 0).
Small signal gain is usually expressed as follows:
Gs � exp(hs/2). hf is the integrated gain of the pulse imme-
diately after the pulse transit that saturates the SOA.
Therefore

hf ¼ � ln½1� ð1� e�hinÞe�u0 � ð22Þ
where U0 = Uin(t = 0)/Esat (U0 is the normalized input
pulse energy).

In our setup, two pulses are circulating in the ring, the
external and the mode-locked pulses. Ts is the time differ-
ence between the centers of the two pulses. In our case,
we are interested in solutions where Ts is larger than the
width of the two pulses.

In order to obtain the steady-state condition for the
laser oscillator, the gain of the SOA is assumed to recover
always to the same level hp

in and hext
in before the mode-locked

and the external pulses enter it, respectively. As the mode-
locked pulse forms at time Ts after the external pulse has
entered the SOA, its gain has had Ts � DT 0 time to recover
to the value hp

in from the value hext
in before the arrival of the

mode-locked pulse, where DT 0 � 1
2
ðtext þ tpÞ, with text being

the FWHM of the external pulses and tp the FWHM of the
mode-locked pulses. Similarly, the external pulse experi-
ences a gain equal to hext

in which has recovered from the sat-
urated value hp

f after the mode-locked pulse exits the SOA
after time Tr � Ts � DT 0 has elapsed (see Fig. 2).

The equation of the recovery of the SOA is thus sepa-
rated in two equations which describe the SOA recovery
after the transition of the external and mode-locked pulses,
respectively. Eqs. (19) and (21) yield:

hp
in ¼ hsþ � ln 1�ð1� expð�hext

in ÞÞexp �U ext
in ð0Þ
Esat

� �� �
� hs

	 

� exp �T s�DT 0

scar

� �
ð23Þ

and

hext
in ¼ hs þ f� ln½1� ð1� expð�hp

inÞÞ expð�U 0Þ� � hsg

� exp � T r � T s � DT 0

scar

� �
ð24Þ

By U0 we denote the normalized pulse energy of the
internal mode-locked pulse and by U ext

in � U ext
in ð0Þ the en-

ergy of the externally introduced pulsed signal hp
in. is an un-

known parameter and depends on the U0 and hs. Solving
the above system of equation we determine the unknown
value of hp

in.

3. Steady-state equation

In order to obtain the steady-state condition we assume
that the pulse reproduces itself after each complete transit.

EoutðtÞ ¼ Epulseðt � T R þ dT Þeþiu ð25Þ
with u constant and dT the detuning between the modulat-
ing frequency and harmonic frequency of the cavity. Each
time the pulse passes a medium the respective operator
acts. Thus, we have:
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E1outðtÞ ¼ cT 1ðt � t1ÞEpulseðt � t1Þ
E2outðtÞ ¼ cT 2ðt � t1 � t2ÞE1outðt � t2Þ
E3outðtÞ ¼ cT 3E2outðtÞ
EoutðtÞ ¼ E3outðt � t3Þ
The above implies that

Eout ¼ cT 3
cT 2ðt � T RÞcT 1ðt � T RÞEpulseðt � T RÞ ð26Þ

Applying the Tfilter(x) operator on the transformed pulse in
the frequency domain we find

T filterðxÞEpulseðxÞ ¼
kDTffiffiffiffiffiffiffiffiffiffiffiffi
1þ ih
p e

dT 2x2

1þih e
ðx�dxÞ2

2Dxg ð27Þ

The steady-state equation (25) can be evaluated now.
Working in the time domain the steady-state equation takes
a very complicated but compact form, that split to several
equations needed to hold. However, we have first to insert
the gain function into the steady-state equation. Based on
Eq. (19), we evaluated the integrated gain for the certain
pulse, we used in our model. We used up to second order
terms which is a very good approximation and have not in-
cluded in previous related studies [30,37]. Our approxima-
tion was checked and compared, for its validity, with the
gain calculated numerically in other works [42]. This should
be considered in addition to the complexity of our model
stemming from the presence of the external modulating
pulse. Thus, the following equations present the integrated
gain to be included in the steady-state equations:

hðtÞ ¼ cþ dt þ et2 ð28Þ
We obtain

c ¼ MU 0ð4ðM � 1Þ
ffiffiffiffiffiffi
2p
p

þ pU 0Þ � 16ðM � 1Þ2 lnð1�MÞ
16ðM � 1Þ2

d ¼ MU 0ð�4þ 4M þ
ffiffiffiffiffiffi
2p
p

U 0Þ
4ðM � 1Þ2

e ¼ MU 2
0

2ðM � 1Þ2

ð29Þ
where

M ¼ 1� expð�hp
inÞ ð30Þ

Using the above equations, we derive the equivalent system
of six equations:

2 ln
DTDxgffiffi

r
p

� �
nþ 2ghþ dT 2

DT 2
ðn� h2Þ

� Lnþ cnþ 2uh� cah� Dx2DT 2 ¼ 0 ð31Þ
2dT

DT 2
ðn� h2Þ þ dn

DT
� dah

DT
þ 2Dxh ¼ 0 ð32Þ

n� h2

DT 2
þ en

DT 2
� hae

DT 2
� Dx2

g ¼ 0 ð33Þ

2 ln
DTDxgffiffi

r
p

� �
hþ 2gnþ dT 2

DT 2
hð1þ nÞ

� Lh� 2unþ ancþ ch ¼ 0 ð34Þ
2dT

DT 2
ð1þ nÞhþ and

DT
� 2Dxþ dh

DT
¼ 0 ð35Þ

hð1þ nÞ
DT 2

þ ane

DT 2
� Dx2

ghþ
eh

DT 2
¼ 0 ð36Þ

where

g ¼
arctan h

n

h i
2

ð37Þ

n ¼ 1þ DT 2Dx2
g ð38Þ

and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ h2

q
ð39Þ

Unknown parameters in Eqs. (31)–(36) include. h, DT, Dx,
dT, U0, /. Performing complex calculations and observing
some remarkable cancellations analytical solutions are
derived:

dT ¼ �ndð1þ ahÞ þ hdða� hÞ
2DT Dx2

gð1þ hÞ þ aeðh� nÞ 1
DT 2 � eðnþ hÞ 1

DT 2

� �
ð40Þ

Dx ¼ dt Dx2
gh� ane

1

DT 2
� eh

1

DT 2

� �
þ and

2DT
þ dh

2DT
ð41Þ

h ¼ �ane
2þ e

ð42Þ

DT ¼
ffiffiffiffiffiffiffiffiffiffiffi
q� 1
p

Dxg

ð43Þ

/ ¼ �gþ dT 2Dx2
gh

n� 1

2r2
� dT 2

2DT 2
aeþ ac

2
þ Dx2DT 2 h

2r2

ð44Þ

where

q ¼
�N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 þ 4a2ð4þ 4eþ e2Þ

q
2a2e

ð45Þ

N ¼ �4� ð2a2 þ 4Þe� ða2 þ 1Þe2 ð46Þ

Note that g does not appear in the solutions.
Finally, the input pulse energy U0 is evaluated solving

the following equation:

2 ln
DTDxgffiffi

r
p

� �
r2 þ dT 2 Dx2

g þ
hae� en

DT 2

� �
n

þ dT 2ðDx2
ghþ

�nae� eh

DT 2
Þh� Lr2 þ cr2 � Dx2DT 2n ¼ 0

ð47Þ

The above formulae epitomize the analytically solved mode
locking conditions we have to know in order to study the
presented laser model.

4. Results and discussion

In this section, the effect of certain critical variables on
the behavior of the SOA-based fiber ring laser is presented.
The pulsewidth of the mode-locked pulse is given by Eq.



Fig. 3. Locus of U ext
in , Gs points for exact mode-locking and for tcar =

800 ps.
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(43). The pulsewidth depends on Dxg (Eq. (43)), a (Eqs. (45)
and (46)) and hp

in (Eqs. (29) and (30)). hp
in is the gain that the

mode-locked pulse experiences before entering the SOA and
depends on U ext

in , Ts, text, the external pulse period T period
ext

(through Tr) as well as on the SOA related parameters i.e.
scar, Esat, g0, L via Eqs. (23) and (24). From the above
parameters only Ts is regarded as an unknown parameter,
while the rest are external inputs to the system. The param-
eters we used in the calculations are shown in Table 2.

The above-mentioned SOA values correspond to those
used in the experiment [28–34] and refer to a 500-lm bulk
InGaAsP–InP ridge waveguide SOA with 10 angled and
antireflection coated facets. The SOA had a peak gain at
1535 nm with 20-nm bandwidth, providing 23-dB small sig-
nal gain with 250-mA dc drive current and had 400-ps
recovery time.

Using the above parameters, we investigated two regions
of operations. One finely tuned region by setting dT = 0
and one slightly detuned for dT = 0.2 ps. The model devel-
oped revealed a remarkable interrelated condition of the
SOA gain and the energy of the externally introduced sig-
nal -locus of Gs, U ext

in parameters. This had been verified
experimentally, in the results presented in [28–34]. In par-
ticular, it was found that stable mode-locked operation
could be achieved for a range of SOA gains in a monotonic
combination with the energy of the externally introduced
optical signal. Most theoretical studies on SOA-based ring
laser presume a constant SOA gain as well as a constant
carrier lifetime. However, both parameters changes dra-
matically with the SOA driving current. In our analysis,
we employed two set of parameters as shown in Table 2.

In what follows, we present results for the tuning regime
that is when dT = 0 and for the slightly detuning regime
when dT = 0.2 ps.

4.1. Tuning regime

Setting dT = 0, we are able to find the region of the input
parameters that ensure mode locking operation and mini-
mum mode-locked pulse. In our model, a worth mentioning
result is the fact that in this perfectly tuned case Eqs. (41)–
(44) and (47) suffice to determine the desired quantities that
characterize the mode-locked system h, DT, Dx, U0, /,
Table 2
Set of values used in the calculations

Carrier lifetime, sc 400 ps at ISOA = 120 mA
800 ps at ISOA = 250 mA

Small signal gain 23 dB at ISOA = 250 mA
17 dB at ISOA = 120 mA

Cavity length 10.5 m
External pulse period 100 ps
External pulse energy 100–200 fJ at 10 GHz
Pulsewidth of external pulses 7 ps
SOA saturation energy, Esat 2000 fJ
Gain coefficient, a 4
Cavity loss, L 4 dB
while the condition of dT = 0 determines hp
in as well. This

consequently determines, through Eqs. (23) and (24), the
locus of points Gs, U ext

in that ensure dT = 0. Figs. 3 and 4
show the locus of Gs, U ext

in parameters to achieve perfect
mode-locking for scar values of 800 and 400 ps, respectively.
Both figures were drawn for Dxg = 0.36 nm and a = 4 that
provide hp

in ¼ 3:89, U0 = 0.032 fJ and DT = 13.344 ps (for
DT, see Eq. (1)).

From both of the above figures, it can be seen that for
perfect mode-locking an increase in the external power
must be always accompanied with an increase in the SOA
gain, that means an increase in its driving current. With
respect to Fig. 4, exact tuning takes place for a shorter
range of values, since it must be ensured that Ts is larger
than the width of the internal and the external pulses.

Figs. 5–7 show the effect of filter bandwidth in the sys-
tem. In particular, Figs. 5 and 6 show the effect on the
pulsewidth and energy of the mode-locked pulse, while
Fig. 7 shows the effect on pulse chirp parameter, h. The first
points of these figures accounts for Dxg = 0.36 nm,
DT = 13.344 ps, U0 = 0.032 fJ and h = � 5.7, and which
Fig. 4. Locus of U ext
in , Gs points for exact mode-locking and for tcar =

400 ps.



Fig. 5. Effect of optical filter bandwidth on the mode-locked pulse width.

Fig. 6. Effect of optical filter bandwidth on the mode-locked pulse energy.

Fig. 7. Effect of optical filter bandwidth on the chirp of the mode-locked
pulses.

Fig. 8. Effect of gain coefficient a on the pulse chirp.
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are associated to all points of the locus illustrated in Figs. 3
and 4, though with different Ts values. In other words all
the pairs of Gs, U ext

in on the curves shown in Figs. 3 and 4
provide U0 = 0.032 fJ, h = � 5.7 and DT = 13.344 ps (note
that a = 4, hp

in ¼ 3:89). The rest of the points in Figs. 5–7
correspond to different families (other values of hp

in) of
curves of exact mode locking.
From the above figures, it can be seen that the broader
the filter is, the shorter the pulsewidth and the higher the
energy of the mode-locked pulse. However, this come with
a certain limit that stems from the locus range of hs, U ext

in .
Further, the broader filter causes an increase on the chirp
(see Fig. 7) due to the new red-shifted components created
in the recirculation. It must be noted here that the nonlin-
ear terms of the gain function allow the appearance of sig-
nificant non-zero values of the chirp parameter that cannot
be neglected. Clearly, a linear approximation of the gain
would result to zero chirp when dispersion is not included
[36]. This is an important outcome of our study that needs
to be taken under consideration in future theoretical model
constructions.

Finally for this regime of operation, we have also inves-
tigated the effect of the gain coefficient or so called SOA
linewidth enhancement factor, a. Our model revealed that
a steady-state solution, across the locus of hs, U ext

in can be
provided for a values in the range of 3.8 < a < 4.2. Within
this range, DT, U0 vary but not significantly, while chirp
increases when a gets larger. Fig. 8 shows chirp variation.
It can be seen that as the gain coefficient factor gets larger,
a rise on the shift between the center of the mode-locked
pulses and the filter occurs, that results in the augmentation
of the SPM induced chirp. It is evident that for obtaining a
low chirp value, a small gain coefficient must be chosen.

4.2. Detuning regime

In this section, results concerning the slightly detuned
regime of operation are presented. In general, a laser sys-
tem may exhibit a very different behavior when it is tuned
away its optimum values. In our case, it is interested to
study the performance of the laser when its cavity fre-
quency is detuned away from being an integer multiple of
the external pulsetrain frequency. Our general approach
of solving the steady-state equations, keeping a non-zero
dT 5 0 term in Eq. (25), makes calculations complicated,
but however, allows the study of this interesting regime
To this end, we have set dT = 0.2 ps and investigated again
the locus of U ext

in , Gs as well as the effect of filter bandwidth



Fig. 11. Effect of optical filter bandwidth on the energy of the slightly
detuning regime (dT = 0.2 ps).
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and gain coefficient. Regarding the effect of the gain coeffi-
cient, a, it was similar with that of the exact tuned regime
of operation but with a slight variation on the mode-locked
pulse duration and pulse. Fig. 9 shows the locus of points
for tcar = 400 ps. As expected the locus curve resembles
the tuned case shown in Fig. 4, but in this case a higher gain
is needed. Results shown correspond to Dxg = 0.36 nm
and a = 4 that provide hp

in ¼ 4:11.
Figs. 10 and 11 show the effect of filter bandwidth on the

mode-locked pulsewidth and energy, while Fig. 12 shows
the effect on the mode-locked pulse chirp. The first points
of Figs. 10–12, (Dxg = 0.36 nm) are associated to all the
points of the curve in Fig. 9, with different Ts though, while
the rest of the points correspond to different families (other
values of hp

in) of curves of the detuned regime. It must be
noted here that results shown in Figs. 5 and 10 are not
directly comparable since they correspond to different
values of hp

in and Ts. From Figs. 10 and 11, it can be noted
the different behavior of DT and U0 with respect to Dxg. It
is evident that the increase of the filter bandwidth results in
unstable operation. The overall unstable performance can
be explained from the fact that the locking bandwidth in
Fig. 9. Locus of U ext
in , Gs points for the slightly detuned regime of

operation and for tcar = 400 ps.

Fig. 10. Effect of optical filter bandwidth on the pulsewidth of the slightly
detuning regime (dT = 0.2 ps).

Fig. 12. Effect of filter bandwidth on the chirp (dT = 0.2 ps).
this regime of operation is significantly smaller. The lock-
ing bandwidth is defined as the bandwidth around the
external fext frequency within which mode-locked opera-
tion can be obtained without a pulsetrain loss. Increasing
the optical filter bandwidth results in the oscillation of
other optical frequencies in CW mode.

5. Conclusions

In this paper, a self-consistent model of a SOA-based
ring laser was presented. The laser uses an intra-cavity
semiconductor optical amplifier (SOA) for signal amplifica-
tion as well as for gain modulation. Gain modulation is
achieved with the introduction of an external optical pulse-
train. The model developed was solved analytically and
revealed the locus of Gs, U ext

in parameters for a tuned and
a slightly detuned mode of operation. In our analysis, we
have assumed SOA-gain saturation by both the external
and mode-locked pulsetrains, and no linear expansion of
SOA gain profile, resulting in a complex but accurate
theoretical model. Using this model, we have investigated
the effect of the filter bandwidth and the gain coefficient
on the mode-locked pulsewidth and energy as well as on
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the pulse chirp. It was found that pulsewidth and energy
decreases/increases respectively with the filter bandwidth,
while chirp increases as well, due to the new red-shifted
components created in the recirculation. Furthermore, in
this paper, we have also investigated, a slightly detuned
mode of operation, when cavity frequency is slightly tuned
away from the external pulse frequency. The study of this
regime revealed some new interesting features, and partic-
ularly it was found that pulsewidth and energy of the
mode-locked pulse drops fast with the increase of the filter
bandwidth. To this end, we may assume that mode-locking
in this regime is unstable and may result in pulse drop outs.

The presented analytical solutions can be used for any
similar SOA-based ring laser setup due to the generic
approach followed.
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