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WITH THE INTERNET’S expansion and ever-increas-

ing line speeds, executing the many different networking

protocols is becoming the main bottleneck in high-speed

communications. Gigabit Ethernet is already available,

and products exist for 10-Gbps transfer rates. New band-

width-eager software applications and faster processors in

desktop and server systems place enormous demands on

the current networking infrastructure. As a rule, network

bandwidth use doubles every four months. Moreover,

guaranteed quality and priority customization are on the

way for many data, voice, and video applications.

To meet these stringent processing demands, design-

ers can either use an ASIC to create a custom solution for

their application or use a commercially available net-

work processor.1,2 The ASIC approach can achieve very

high processing speeds but is inflexible, because changes

in chipset behavior are either impossible or have limited

support. This inflexibility is a significant problem,

because applications and protocols continually evolve

and extend to meet user-desired functionality. In addi-

tion, deploying an ASIC-based design requires more time

than deploying a network-processor-based one.

Commercial network processors such as Intel’s 

IXP (http://developer.intel.com/design/network/products/

npfamily/ixp1200.htm) and Motorola’s C-Port (http://

e-www.motorola.com/webapp/sps/site/homepage.jsp?

nodeId=03M0ylgx1Ks) are programmable,2 so they can

accommodate newer protocols. However, they represent

a brute-force approach, using multiple

(and simple) processing cores to achieve

the desired processing performance levels.

The developer must comply with several

system restrictions, write a parallel pro-

gram in a potentially heterogeneous envi-

ronment, and meet all hard, real-time

network-processing constraints. In addition, despite con-

siderable progress, software development tools for such

processors are still in their infancy.

Today’s processors provide sufficient processing

power to execute most, if not all, networking protocols.

Despite their high processing potential, even fast work-

stations fail to sustain this processing even at 1 Gbps,

because of their I/O limitations. To alleviate this bottle-

neck, we propose an intelligent I/O technique that offers

two important advantages:

■ It relieves the processing core of I/O duties, freeing

resources to meet protocol processing needs.

■ It facilitates application development. With minor

modifications, existing tool chains such as compil-

ers can use the added features.

We demonstrate the viability of this approach by

implementing it with Pro3, a single-chip network proces-

sor capable of delivering advanced firewall processing

of transmission control protocol (TCP) packets at 2.5

Gbps.

Network processing fundamentals
A processor’s basic functions correspond to the

steps in Figure 1. Flow classification takes the header

information (such as source and destination IP address-

es) and produces a flow ID for indexing the connec-
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tion-related internal data structures. Subsequently,

these structures are necessary for obtaining informa-

tion about this connection’s state. This information and

the selected header fields are usually sufficient for the

protocol software to decide its course of action. This

action usually involves forwarding the packet (possi-

bly with modifications) to its destination, potentially

creating more control (and possibly data) packets. This

general framework for network processing can

describe many applications, such as firewalls, routers,

and gateways.

A general-purpose processor can perform most of

these steps at a high speed but has limited pin band-

width for transferring the header fields (and the packet

information in general) and the state information.

General-purpose processors work well for predictable

programs for which caches offer low-latency access. In

contrast, the behavior of protocol processing and pack-

et data access presents limited locality, underusing the

processor’s abilities.

On the other hand, low-performance computation

engines in today’s network processors are limited in

both processing and I/O potential. Although the actual

processing portion of the code in Figure 1 is, for most

applications, relatively short and manageable (involv-

ing just a register manipulation), the I/O portions are

expensive: The locations present only spatial and no

temporal locality, and the latency to collect all the data

is quite high. However, using regular processing cores

along with intelligent I/O can provide the required per-

formance levels at low cost.

Pro3 architecture
The Pro3 system architecture accelerates execution

of telecommunications protocols by extending a scalar

reduced-instruction-set computer (RISC) core with pro-

grammable, pipelined hardware.3-5 Pro3 incorporates

parallelism and pipelining wherever possible, and inte-

grates generic microprogrammed engines with hard-

wired components optimized for specific protocol

processing tasks. The system supports 2.5-Gbps links for

up to 512,000 active connections, corresponding to 7.5

million packets per second in worst-case TCP traffic.

As Figure 2 shows, Pro3 integrates a low-cost, power-

efficient scalar RISC processor (the Hyperstone Electron-

ics E1-32X RISC, http://www.hyperstone-electronics.com)

in a reconfigurable processing module (RPM). Two RPM

modules operate in parallel to allow the concurrent exe-

cution of incoming and outgoing packet processing. Dual

RPMs also permit load balancing and result in higher

throughput. A third Hyperstone processor handles system

management and interfaces with an external computer

system.

Reconfigurable processing module
In the Pro3 project, we optimized each RPM module

to perform packet processing. Each module contains a

protocol processing engine (PPE), a field extraction

(FEX) engine, and a field modification (FMO) engine.

The FEX engine directly loads the required protocol data

into the RISC processor for processing. The PPE interfaces

the FEX and FMO engines to the integrated Hyperstone

RISC. The FMO engine handles packet construction and

header modification. These three engines form a power-

ful three-stage pipeline module that is the processing

heart of the system (see the RPMs in Figure 2).

The FEX engine is a custom processor with a three-

stage pipeline architecture. It is fully programmable,

and operates protocol- or application-specific firmware.

The FEX engine extracts all the fields needed for further

processing from the received portion of the packet and

forwards them to the PPE. 

FMO complements FEX, adopting a three-stage

pipeline and a programmable operation. FMO com-

poses protocol messages, taking as input the processed

results (fields) from the PPE, the original packet data

from the delay FIFO buffer, and commands from the

protocol execution.

The FEX, PPE, and FMO components can process

data with a maximum throughput of 6.4 Gbps. A 32-bit-

wide data path and a 200-MHz clock frequency (system

clock) make this possible.

PPE architecture
The PPE uses an intelligent I/O subsystem to offload

the transfer of packet data and state information from

the processor core. Figure 3 shows the PPE architecture,

which is based on the assumption that it is possible to
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For each packet {
1. Identify connection ID (flow), packet classification
2. Get state information (last packet seen, and so on)
3. Consult selected fields (parts of header and body)
4. Execute protocol code on state and selected fields
5. Update (?) packet and flow state
6. Send (?) updated packet
7. Create (?) other control packets

}

Figure 1. Pseudocode for abstracting a protocol’s processing

functions. (Question marks indicate optional steps.)



modify the processor core to provide additional ports

for the register file. The control logic reads the incom-

ing packet data from the transceivers and passes it

directly to the processor registers. The state control logic

matches the incoming packet with the flow state, reads

the required fields from memory, and again passes the

information to the processor. This assumes the flow clas-

sification step has already occurred, using either hard-

wired blocks or content-addressable memories (CAMs).

When all the necessary information is available, the

processor commences protocol processing in its regis-

ters. The results are also stored in registers, and the con-

trol logic extracts the data and transmits it, if necessary,

to the FMO engine.

This architecture has two main advantages:

■ It offloads the processor, which then doesn’t need to

execute load and store instructions for state and

packet I/Os.

■ It creates a high-level, three-stage pipeline between

input-packet data transfer, processing, and output

data packets. This pipeline allows overlap of these

tasks and leads to better overall performance.

Issues that the architecture still needs to address

include the following:

■ Synchronization between input, processing, and out-

put in light of pipelined packet processing is crucial

for correctness, because all these processes share

the processor’s register file.
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■ The total number of registers is a potential limit of the

architecture.

■ A powerful hardware-software interface is needed to

interact with the control logic’s I/O portions and

transfer the data packets.

Fortunately, solutions for all these issues already

exist. We synchronize the pipelined execution of input,

processing, and output stages in the control logic. To

improve performance, we also provide bypassing of

modified flow state information from processing and

output stages to the input stage.

The number of registers in the architecture repre-

sents a tradeoff: Larger register files are slower but allow

larger data transfers without delay. We analyzed the

TCP, user datagram protocol (UDP), and asynchronous

transfer mode (ATM) signaling protocol, and found that

32 registers are sufficient to hold the necessary state

information and the packet header. More registers are

necessary to process the packet body, but with pipelin-

ing the architecture can process 32 registers at a time.

Today’s processors contain more than 32 registers (for

the use of renaming), and 64 registers can be reason-

ably fast. We overlap the use of registers between the

I/O functions to reduce the register file’s size. In our sim-

ulations, we assume that two sets of 32 registers handle

packet processing and I/Os, and another 32 handle pro-

gram variables and computations.

Hardware-software interface
For successful operation, the hardware and software

must coordinate in two ways:

■ upon packet input, the hardware must notify the soft-

ware to initiate packet processing; and

■ upon processing completion, the software must noti-

fy the hardware to output the processed packet.

For the first requirement, we devised a simple hand-

shake scheme: A signal from the control logic notifies the

processor that a new packet is available for processing;

the processor maintains an Idle signal, which informs the

control logic that it is not processing any packet.

Deactivation of the Idle signal indicates the beginning of

packet processing. Reactivation of the Idle signal indi-

cates the completion of processing, and the processed

packet can be transmitted to the FMO module.

For efficiency reasons, we do not use interrupts to
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initiate packet processing. The processor waits for pack-

ets, using the following instruction sequence:

move R4, Wait

Wait: jump_register R4

This is an infinite loop, but after transferring the packet

data, the hardware control logic overwrites R4 with the

packet handler’s address. So the loop ends, and pack-

et processing begins. A hardware dispatch table main-

tains each packet’s starting address.

On the output side, the interface is more involved.

To output a packet, the control logic must know its size,

where to send it, and other similar information.

Moreover, the result of processing can be multiple pack-

ets, not just one. To handle these cases, we defined a

format for a software result register. This is the first reg-

ister that the output logic reads, and it defines all sub-

sequent actions.

The format divides the register into the fields listed

in Table 1.

The output control logic interprets these fields. For

multiple output packets, the interface uses one software

result register per packet.

The proposed hardware-software interface is register

based and easily expressible in software with a function

(or system) call that on return updates the appropriate

registers. Therefore, even with the defined interface,

designers can use traditional compiler tools to develop,

optimize, and debug the application code. This advan-

tage can be crucial to timely product development.

PPE implementation
Figure 4 shows the PPE module, which includes

three units: the modified Hyperstone (MHY) RISC core,

the read-write control RAM (RWR), and the RPM glue

logic (RPG). The input module transfers packets and

flow state into MHY’s register file for processing. The out-

put module transfers the process results (fields, flow

state, and commands) to the field modifier module. The

control and monitoring module (CMM) is responsible

for monitoring and debugging, and initializes all inter-

nal structures (the dispatch table, and so on).

The input module also supports internal-state bypass,

detecting the location of the latest version of flow state

for each incoming packet. Because processing is

pipelined, the correct state information is available in

either the MHY register file (just updated from the pre-

vious packet), the FIFO RWR buffers (the state was

updated but is not yet written to memory), or the FIFO

state buffer. The RWR module performs three major

tasks. For each packet, it

■ reads the appropriate state information from the con-

trol RAM and provides it to the RPG’s input sub-

module,

■ receives the updated state from the newly processed

packet and writes it to the control RAM, and

■ acts as a searchable write buffer to ensure that read-

ing the control RAM always provides the correct

results.

We implemented all PPE modules except the RISC

processor in VHDL. The modified Hyperstone RISC

came as a VLSI hard-macro, along with a gate-level

model for simulations. The Pro3 performance target was

an operating frequency of 200 MHz, sufficient for achiev-

ing line-speed processing at 2.5 Gbps. We designed Pro3

using semicustom logic for all control and storage, and

memory blocks for large buffers. We synthesized the

design using UMC 0.18-micron technology, achieving the

target operating frequency after minor design modifica-

tions. We then incorporated this design into the Pro3

chip, which UMC fabricated. We are currently testing the

chip, and we have already verified the correct operation

of the internal processing pipeline. We are also testing

the I/O transceivers; once they’ve proven functional, we

will proceed with wire-speed full-system testing.

PPE evaluation
Our evaluation addresses the architecture’s process-

ing efficiency and implementation cost. We used VHDL

simulations to obtain the actual number of useful cycles

and the number of stalled cycles for various input pack-

ets (of differing lengths) and total processing times. We

assumed 10 active IP connections, with processing times

from 20 to 60 cycles. We randomly selected 20% of the

packets to produce two responses. We also varied the

control RAM’s response time to between 5 and 10 cycles

to model contention between multiple processing
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Table 1. Fields for the software result register.

Field Description

Length Number of words to transfer

Start register Number of the first register

MoreFields More fields follow (pipelining)

Type Type of packet (internal)

MemPacket For storing large or multiple packets in memory



engines, and we simulated the system for packet sizes of

40, 80, and 120 bytes (10, 20, and 30 32-bit words).

Table 2 gives the results of these simulations. The first

portion shows the packet latency: the number of cycles

required to transfer a packet and execute the protocol

code on it. The second portion shows the correspond-

ing efficiency (percentage of time in which the PPE per-

forms useful work) compared to the bare processing

time (excluding the time to transfer data to and from

the processor).

These results indicate that the hardwired I/O mech-

anism is effective when the computation cost is high.

This situation is usually the case, because 40 or 50

instructions correspond to highly tuned protocol code.

In several cases, the cost can be higher, further improv-

ing the architecture’s efficiency. The pipeline’s operat-

ing efficiency improves as the processing time for the

packet grows, meaning that for longer processing times,

a larger fraction of latency—from I/O packet and state

data transfer—remains hidden; thus, the system essen-
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tially performs these operations for free.

These results are encouraging but do not address the

optimality of our approach compared to other archi-

tectural alternatives. To address this issue, we defined

two simple architectures. The first is serial I/O (SIO); it

operates exactly like the PPE but performs the input,

processing, and output operations sequentially. We

assume memory-mapped FIFO interfaces that are read

and written with load and store instructions. In this way,

SIO models an unmodified processor integrated into the

processing pipeline. 

The second architecture alternative is an optimized

version of SIO, called SIO2, which models a more-aggres-

sive implementation that loads only the useful header and

body fields. In SIO2, the processor reads or writes only half

the header fields and state information. However, to sup-

port random access between fields, such an architecture

requires storing packets in memory and not in FIFO

buffers. Neither SIO nor SIO2 models memory latency,

contention, or FIFO data availability; they assume that

data is always available when needed. Therefore, these

models represent an unrealistic best case for sequential-

ly accessing and processing packet data.

To compare the PPE approach with these models, we

performed a series of experiments. These experiments

varied the process duration from 20 to 60 cycles, and we

simulated packet sizes of 40, 80, and 120 bytes. The

results in Figure 5 clearly show that the PPE approach is

successful in overlapping the I/O operations required for

packet processing. SIO is clearly worse, in most cases

achieving an efficiency of around 50%. SIO2 makes

fewer references to the memories. SIO2 improves on

SIO’s performance, achieving an 80% best efficiency, but

only for large packets and processing times. However,

neither models include any of the overheads for trans-

ferring data to and from the pipeline. If we had modeled

these overheads, the performance difference between

PPE and SIO or SIO2 would have been even greater.

The next question is, How much must we spend to

achieve this performance? To answer this question, we

synthesized the HDL code for the design’s I/O portions.

We do not include the processing core’s gates and area,

because we want to measure only the extension’s cost.

We used a general 0.18-micron library and the Synopsys

dc_shell to perform the synthesis. Table 3 gives the

results, which include all structures needed by our

architecture but exclude the cost of changes in the pro-

cessing core. This cost is relatively difficult to measure

because it varies depending on the core’s architecture.

The cost, however, includes the extra registers in the

register file (64 in our simulations) and the implemen-

tation of the hardwired handshake mechanism for noti-

fying the hardware of processing completion.

ARCHITECTURES USING an approach similar to ours

include the Pipe processor and the iWarp processor. The
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Table 2. PPE latency and processing efficiency for various protocol processing durations.

              Packet latency (cycles)                         Processing efficiency (%)              

Protocol process 40-byte 80-byte 120-byte 40-byte 80-byte 120-byte 

duration (cycles) packets packets packets packets packets packets

20 27 42 42 75 47 47

30 33 40 42 91 75 71

40 43 44 45 93 91 89

50 53 53 53 94 94 94

60 63 63 63 95 95 95
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Figure 5. Efficiency versus protocol processing duration for

PPE, serial I/O (SIO), and optimized serial I/O (SIO2) models.



Pipe processor uses two register-mapped

queues to synchronize the producer-con-

sumer relationship in its decoupled archi-

tecture.6 The iWarp processor also uses a

register-mapped network interface to effi-

ciently communicate with its systolic

peers.7 We use a similar handshaking

mechanism to efficiently wake up the software, but we

advocate the use of many registers to efficiently present

the packet data to the application code.

Several network-processing architectures are avail-

able today. The network processor that exhibits the

most similarities to our work is Intel’s IXP. In that system,

each microengine can initiate a transfer of a 64-byte

block from the main chip buffer that holds the packets.

However, each microengine supports up to four threads

and incurs thread scheduling and synchronization over-

heads. Furthermore, compilers cannot easily handle this

complex structure, leaving the programmers to explic-

itly manage it. Our approach targets simpler processing

cores and is easier to integrate into existing compilers.

Another approach for overlapping I/O and process-

ing is possible via simultaneous multithreading (SMT),

in which different threads share the multiple execution

resources of an instruction-level-parallel processor.8

Indeed, such an architecture can achieve similar ben-

efits to those of our approach. However, SMT architec-

tures require a significantly more-complex processor

architecture to support instruction-level parallelism and

to simultaneously support multiple threads. Therefore,

an SMT processor’s implementation cost is far higher

than that of our simple circuits. ■
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