
 

 
Abstract— This paper addresses the problem of burst 

assembly in OBS-GRID networks and particularly the TCP 
throughput maximization problem for large file sizes. For that 
purpose, a novel adaptive size-based approach is proposed, 
following some probabilistic methods and considering the effect 
of the burstification process in the overall transport system. The 
scheme has been evaluated in a high capacity GRID network. It 
was found that the proposed scheme results in shorter file 
transfer times, a significant higher TCP throughout, thus 
yielding a positive impact at the grid mechanics. The 
performance of the scheme is compared to that of a timer-based 
algorithm. 

Index Terms—Transport Control Protocol, GRID, Optical 
Burst Switching. 

I. INTRODUCTION 
ptical burst switching (OBS) [1] has been introduced to 
combine both strengths of packet and circuit switching 
and is the most promising technology for next generation 

optical Internet. An OBS network consists of edge routers that 
are responsible for the creation of the bursts and a set of core 
routers that transparently forwards them to their destination. 
In OBS networks, an optical burst is constructed at the 
network edge, from an integer number of variable size 
packets. Two distinct burst assembly algorithms have been 
proposed in the literature: the timer-based and the threshold-
based. In the timer-based method, also denoted as TMAX in the 
literature, [2] a time counter starts any time a packet arrives 
and when the timer reaches a time threshold (TMAX), a burst is 
created; the timer is then reset to 0 and it remains so until the 
next packet arrival at the queue. Hence, the ingress router 
generates periodically bursts, every TMAX time, independently 
of the yielding burst size. In the second scheme, [3], a 
threshold is used to determine the end of the assembly process. 
In most cases the threshold used is the burst length denoted in 
the literature as BMAX. In that case, bursts are thought as 
containers of a fixed size BMAX, and as soon as the container is 
completely filled with data, the burst is transmitted.   

The timer-based method limits the delay of packets to a 
maximum value TMAX but may generate undesirable burst 
length, while the burst-length based method generates bursts 
of equal size, but may result in long delays when the traffic 
load is light. To address the deficiency associated with these 
assembly algorithms, hybrid (mixed time/threshold based) 
assembly algorithms were proposed [4], where bursts are 
created when either the time limit or the burst-size limit is 
reached, whichever happens first. Apart from the 
aforementioned assembly schemes, other more complex 

schemes have been also proposed, which are usually a 
combination of the timer -based, and the threshold-based 
methods [5].  

The performance of TCP over OBS networks has been 
studied in previous works [6]-[8] where it has been observed 
that the burst assembly process at the edge nodes has a 
significant impact on the end-to-end performance of TCP, 
mainly because it introduces an unpredictable delay, [9], that 
challenges the window mechanism used by TCP protocol for 
congestion control. A useful insight on TCP traffic statistics is 
given in [10]. In particular, it was found that short assembly 
times yield a higher throughput to TCP sources primarily 
because they reduce the total end-to-end delay associated with 
the round trip-time delay. However, short assembly time 
prohibit the fast expansion of the congestion window 
primarily because sources are allows to transmit only a few 
segments per round. Long assembly times, are more efficient 
especially for fast TCP flows [10], since they allow the 
transmission of multiple segments per burst. However, this 
throughput gain may be canceled by the large burstification 
delay.  

In this paper, an adaptive size-based burst assembly 
algorithm is presented for the special case of an OBS-GRID 
network. Grid networks employ the transfer of large files 
between computing and storage elements and require fast 
completion times with low or minimal losses. To this end, it is 
important to adapt burstification process to minimize delays 
upon losses that inevitably lead to low TCP throughputs.  

The rest of paper is organized as follows. Section II 
presents an outline of the proposed algorithm, while Section 
III its basic mathematic analysis. Section IV describes its 
event drive execution and finally Section V provide evaluation 
results over a hypothetical grid network.  

II. ADAPTIVE TCP ALGORITHM OUTLINE 
In the proposed algorithm (hereinafter called Adaptive TCP 
hereinafter), we have used some basic properties of the TCP 
dynamics to effectively adapt assembly time upon burst losses 
for large file transfers. The working model of the algorithm 
suggests that there is a way to efficiently count the active TCP 
window sizes by creating a bookkeeping mechanism in the 
burstifier's end. The idea of the algorithm is simple and very 
effective (as proved by the simulations); the burstification 
process is looking after the active TCP flows and their 
congestion window size in order to adapt the size of the burst 
that must be sent. The algorithm at the beginning of its 
execution assumes a small, but not negligible, burst size 
considering that most flows are in a slow-start phase. Such a 

An Adaptive Burst Assembly scheme for OBS-
GRID networks 
Nikos Korkakakis and Kyriakos Vlachos 

 
Research Academic Computer Technology Institute and Computer Engineering and Informatics Department,  

University of Patras, GR26500, Rio, Patras (kvlachos@ceid.upatras.gr)  
 

O

978-1-4244-1876-3/08/$25.00 ©2008 IEEE

CSNDSP08 - 414 - Proceedings

Authorized licensed use limited to: University of Patras. Downloaded on December 8, 2008 at 11:44 from IEEE Xplore.  Restrictions apply.



 

value delays TCP transmission but is gradually eliminated due 
to the adaptiveness of the algorithm. At any stage or after 
every successfully sent burst, the algorithm is checking its log 
and calculates the new congestion windows of the TCP flows. 
In this way, it estimates the size of the data that each flow will 
send in the next period of time. Therefore the algorithm may 
calculate the size of the next burst to be transmitted as the sum 
of all the estimations from all flows.  
Similarly, upon a burst loss, the algorithm approximates the 
sizes of the congestion windows of the affected TCP flows, in 
order to “re-evaluate” the network situation and adopt the 
burst size accordingly. 

III. THE CALCULUS MECHANICS 
The proposed scheme is based on a modification of the mixed 
BMAX /TMAX algorithm. The algorithm approximates packet 
arrivals in small time-offsets (Toffset) with a Poisson 
distribution of non- constant mean rate, λ(x) and compares the 
actual collected data size with the approximated one. Equation 
1 provides weighted probability sum that returns the expected 
burst size. 

)()()( )( treflowCtB
flow

tr
winsize ⋅⋅= ∑ −

  (eq.1) 

In this equation, )( flowCwin  and r(t) stand for the 
approximations of the congestion window and the Poisson 
distribution. r(t) function is obligatory for calculating the 
expected packet arrivals at the given time and is given by 
Eq.2. 

∫
−

⋅=
t

offsett
offset dx)x(T)t(r λ     (eq.2) 

r(t) integrals can be quickly and precisely calculated by 
numerical methods such as integration by parts or Risch 
algorithm . 
When a packet arrives, the algorithm recalculates the packet 
arrival rate, λ(x) using the least square algorithm per TCP 
flow. Thus we add in every packet arrival a small fixed length 
calculation O(1). This is because each approximation that use 
the least square method needs three operation; namely one 
square calculation, one addition and one division. 
In order to prove, that Equation 1 is a weighted Poisson 
probability sum, we use in our analysis general statistical 
properties and the Poisson distributions properties. The 
probability for exactly one TCP segment arrival 

is
'')',1( λλλ −⋅= eP , where λ’ denotes the approximated 

arrival rate, λ(x), calculated as described earlier. The 
probability for exactly two segments to arrive from two 

different sources is       
'

111
2')',1( λλλ −⋅= eP ,  

if )',1()',1( 2211 λλ PP ≤  or 
'

222
2')',1( λλλ −⋅= eP  elsewhere. 

The probability for exactly n segments to arrive from n 

different sources is 
)'( 'min nen

n

λλ −⋅
.  

 From the definition of Poisson distribution we have; 

Pr( ) (1 )

! 1
( )! !

1 2 1lim ... 1 1
!

lim lim

lim

s n s

n n

s n s

n

n ss

n

n
X s p p

s

n
n s s n n

n n n n k
n n n n s n n

λ λ

λ λ λ

−

→∞ →∞

−

→∞

−

→∞

⎛ ⎞
= = − =⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

⎛ ⎞− − − +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

where p=λ/n. As n approaches ∞, then !)!(
!

ssn
n
−   approaches 

one, while 

kn

nn

−

⎟
⎠
⎞

⎜
⎝
⎛ −⋅⎟

⎠
⎞

⎜
⎝
⎛ −

λλ 11
 approaches

λ−e . In the 
expanded form of the above equation the only object that is 

not affected by n approaching ∞ is 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
!s

sλ

.  
Based on the above analysis, it is easily understood that Eq. 1 
is the sum of two terms; one showing the Poisson probability 
and its weight. This weight is used to provide identification 
and classification to the incoming aggregated traffic using the 
general statistical property. Thus, some important information 
concerning the characteristics of the tcp flow such as 
congestion window (others may be applicable but not in this 
schema) can be obtained. 
To this end, after n TCP segments arrival, the expected burst 
size is given by Equation 1, which returns the expected size of 
the aggregated data. The simulations suggest that this 
probability is over 98,4% before sending out the burst. Cwin 
represents bytes, and help towards assessing the expected size 
of a burst given the TCP congestion window values.  

IV. EVENT DRIVEN EXECUTION 
Based upon the above mathematical schema, the algorithm’s 
execution idea is quite simple. While packets are arriving at 
the edge router, the burstifier each time calculates the 
expected incoming data size and then decides whether to send 
or not the data burst. The algorithm uses an event driven 
mechanism that can provide an easy hardware implementation 
and a significant performance boost. The algorithm’s events 
driven input mechanism are based on the following events: 
 TCP segment arrival (the algorithm may look after some 

other input e.g. IP datagram arrival etc). 
 Congestion Window of flow n changed (in hardware 

simulation it is probably easier to create a pooling 
mechanism to check for such alterations) 

 Burst report which consists of three different events: burst 
discarded from the core routers, burst discarded from the 
destination router and burst successfully sent 

A simple running example of the algorithm is the following: 
1) Event::PacketReceived.Trigger: Decision making method 
based on eq.1: 

a. Burst is transmitted (if current Burst Size is equal or 
larger than the expected). 

b. Burst is not transmitted (if current Burst Size is smaller 
than the expected). 

2) After a Burst is transmitted, a receipt is expected to arrive 
on whether the burst reached its destination or not. However 

Proceedings - 415 - CSNDSP08

Authorized licensed use limited to: University of Patras. Downloaded on December 8, 2008 at 11:44 from IEEE Xplore.  Restrictions apply.



 

the receipt by itself is not important. Important is to have 
enough information (from Event::PacketReceived.Trigger 
method) on the packet arrival rate and the size of the 
aggregated data at each of the edge routers burstifier 
mechanism: 
a. Event::BurstDroppedCore.Trigger (may point out at some 

extent that the path is overloaded or some indication of 
network fault. It may be important to reroute or find 
another destination) 

b. Event::BurstDroppedEdge.Trigger (may point out at some 
extent that the node accessed is overloaded and it may be 
important to change our destination if that is possible. In 
grid network is important to be able to reroute and reassign 
resources. 

c. Event::BurstSuccPassedCore.Trigger (Not in use in this 
algorithm. May provide information of the location of the 
fault) 

d. Event::BurstSuccSentEdge.Trigger (Message that 
everything is successful and the burst is successfully sent). 

V. THE SIMULATION SCENARIO 
The adaptive TCP algorithm has been evaluated using ns-2 
over the NSF network topology that has been modified to 
support an OBS-GRID network. It is therefore assumed that it 
consists of six computing and two storage elements located at 
the edges of the network, while an additional edge node, 
processes and parses user requests. Figure 1 displays the 
experimental setup simulated. It is assumed that all storage 
and computing element exchange data sets based on some user 
requests. We have limited our study on evaluating the 
effectiveness of these transfers, when TCP transportation 
mechanism is used, for large datasets (e.g. 30-150 MB files), 
assuming that all traffic is ftp like. Each optical link employs 
two wavelength channels, each at 10Gbps. File transfer arrival 
is modeled either with a Gaussian distribution 
with 3,22 == μσ , or with a constant arrival rate of 6 
requests per second, while the access rate from the source 
machine to the OBS edge router is 100Mbps.  
We have compared the adaptive TCP algorithm with the 
timer-based algorithm (Tmax) taking into consideration the 
yielding flow duration, number of active connections and 
bandwidth utilization for the same input traffic (data set 
exchanges).  
In order to provide a more accurate comparison scheme Tmax 
time threshold was set equal to the mean time of the adaptive 
TCP burstification time (~7,2ms). Other constant values 
usually selected in the literature (2ms, 5ms, 10ms) provided 
inferior results for Tmax and are not provided here. 
The main effect of adaptive TCP burstification scheme is 
shown in Figure 2, which displays the file transfer time using 
the cumulative density function (CDF). It can be seen that the 
end-to-end completion time is significant smaller when using 
the adaptive scheme. In particular, the 80% of the flows 
complete their transfer within 1.4sec when using the adaptive 
while in 1.7sec when using Tmax algorithm. This was 
primarily due to the dynamic variation of the assembly time, 
which in turns optimizes the burstification delay based on the 
flows’ congestion window. In other words, assembly time was 

decreasing when flows’ windows were decreasing upon 
segment losses. In [11], it was shown that short assembly 
times offer a high advantage to flows with smaller congestion 
windows, while large assembly times was proved to 
unnecessarily delaying segment transmission. To this end, 
upon a burst loss, many flows will suffer from segment losses 
and thus will halve their windows. In such case, burstification 
delay must be adapted to the new traffic situation, since less 
data are expected to arrive in the next assembly cycles.  
This was also clear from the number of active flows during the 
simulation as well as the bandwidth utilization profile in the 
network. Figure 3 and Figure 4 display the corresponding 
results. From Figure 3, it can be seen that the average number 
of simultaneous active flows, (after a sharp increase in the 
beginning of the simulation experiment), is 75 and 45 
respectively for the Tmax and adaptive TCP algorithm. It is 
therefore clear that file transfer using the Tmax scheme is 
longer resulting in a higher overhead for the network. Figure 4 
shows that capacity is 80% utilized in the case of the adaptive 
TCP scheme and only 40% in the case of the Tmax scheme. 
To this end, it is clear how efficient is the adaptive TCP 
algorithm and how much capacity is wasted, when using a 
fixed timer-based to transfer large data sets. The results shown 
in Figure 4 are normalized to the maximum throughput 
achieved. In the simulation experiment, a capacity usage of 
100% corresponded to 6Gbps bandwidth. 

The number of retransmissions over the tcp plane is also a 
significant indicator regarding the effectiveness of our 
scheme. Figure 5 displays the number of TCP flows that 
retransmit at least one (or more) segments per logging epoch 
(every epoch has about 0.0025 sec duration). As shown in 
Figure 5, the number of flows that retransmit segments is 9 in 
the case of Tmax scheme for all the simulation cycle, while 
the proposed scheme exhibit a high number during the 
initialization but only a few in the sequence. In particular, 
more than 30 flows retransmit segments in the first 3sec 
(epoch 349), and only 1 or 2 during the rest simulation cycles. 
 To this end, and based on the above results, we may argue 
that the proposed scheme is more suitable for grid application 
involving large file transfers. It yields a higher usage of 
available resources with shorter file transfer times. The 
proposed adaptive TCP algorithm reacts to burst losses rapidly 
by adapting assembly time to smaller values, before gradually 
increasing them again, upon the successful segment 
transmission. In contrast fixed, constant burst assembly times 

 
Figure 1: Hypothetical Grid over NSF network topology 

CSNDSP08 - 416 - Proceedings

Authorized licensed use limited to: University of Patras. Downloaded on December 8, 2008 at 11:44 from IEEE Xplore.  Restrictions apply.



 

result to a poor bandwidth usage, longer transfer times that 
possibly cannot be tolerated by higher layer grid applications. 

VI. CONCLUSIONS 
In this paper, we have presented a new adaptive assembly 
algorithm suitable for OBS grid networks that involve large 
file transfers. The transmission of large files over an OBS 
networks result in a poor performance primarily due to the 
many burst losses that will occur and the tcp behavior due to 
these losses. The proposed algorithm approximates packet 
arrivals in small time-offsets with a Poisson distribution of 
non- constant mean rate, and thus approximated the next burst 

size. To this end, the scheme is capable of adapting to varying 
packet arrival rates that are caused by the increase/decrease of 
the flows’ windows. Simulation results have shown that the 
proposed scheme results in faster file transfers with a higher 
consumption of bandwidth resources. 

ACKNOWLEDGEMENTS 
The work described in this paper was carried out with the 
support of the BONE-project ("Building the Future Optical 
Network in Europe”), a Network of Excellence and IST-
PHOSPHORUS project. 

REFERENCES 
[1] C. Qiao and M. Yoo, “Optical burst switching (OBS)-A new 

paradigm for an optical internet,” J. High Speed Networks, vol. 
8, no. 1, pp. 69–84, 1999. 

[2] F. Callegati and L. Tamil, “On optical burst switching and self-
similar traffic”, IEEE Commun. Lett, Vol 4, pp. 98-100, Mar. 
2000. 

[3] V. Vokkarane, K. Haridoss, and J.P. Jue, “Threshold-based burst 
assembly policies for QoS support in optical burst-switched 
networks”. In Proceeding of Opticomm, pages 125-136, 2002. 

[4] X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of 
assembled burst traffic in optical burst switched networks,” in 
Proc. Opticomm, 2002, pp. 149–159. 

[5] Cao, X., Y. Chen, J. Li, and Qiao, C. (2002). IEEE Globecom 
2002, 3, 2808 – 2812. 

[6] X. Cao, J. Li, Y. Chen, and C. Qiao, “Assembling TCP/IP 
packets in optical burst switched networks” in Proc. IEEE 
GLOBECOM, vol. 3, Nov. 2002, pp. 2808–2812. 

[7] S. Malik and U. Killat, “Impact of burst aggregation time on 
performance in optical burst switching networks”, in Proc. 
Optical Network Design and Modelling (ONDM-2005), 2005. 

[8] A. Detti and M. Listanti, "Impact of segments aggregation on 
TCP Reno flows in optical burst switching networks", in Proc. 
IEEE, INFOCOM 2002. 

[9] M. Izal and J. Aracil, "On the Influence of Self-similarity on 
Optical Burst Switching Traffic", Proceedings, IEEE Globecom 
2002, Taipei, Taiwan, November 2002. 

[10] Xiang Yu et al. “Traffic statistics and performance evaluation in 
optical burst switched networks”, Journal of Lightwave 
Technology, vol. 22, no. 12, pp. 2722 – 2738, Dec. 2004. 

[11] K. Ramantas, K. Vlachos, Ó. González de Dios and C. Raffaelli, 
“TCP traffic analysis for timer-based burstifiers in OBS 
networks” in proceeding of ONDM 2007. 

 
 

 
Figure 4: Bandwidth utilization Results 

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

N
um

be
r o

f A
ct
iv
e 
Fl
ow

s

Simulation Time (sec)

Tmax

Adaptive

 
Figure 3: Active TCP connections over simulation time. 

 
Figure 2: Cumulative density function of TCP transport times 

  
Figure 5: Number of flows that retransmit one or more TCP segments over
logging epoch (every epoch has about 0.0025 sec duration) 

Proceedings - 417 - CSNDSP08

Authorized licensed use limited to: University of Patras. Downloaded on December 8, 2008 at 11:44 from IEEE Xplore.  Restrictions apply.


