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This paper describes the programmable protocol processor (PRO3)
architecture, which is capable of supporting advanced security services over
high-speed networks. Security services include such things as a firewall,
packet and flow classification, connection-state handling (i.e., stateful
inspection), higher-layer protocol data unit (PDU) reassembly (i.e.,
application-level firewalls), and packet encryption and decryption. The PRO3,
which is integrated with a high-speed line card, attempts to accelerate the
performance of the firewall by implementing key functionality in hardware
and by optimizing the balance between hardware and software functions.
In this way, significant performance enhancements can be achieved, such
as making transport control protocol (TCP) and Internet protocol (IP) data
transactions secure, and protecting and separating virtual private networks
(VPNs) from the external public network. The PRO3 incorporates an
innovative scheme—a reduced instruction set computing (RISC)-based
pipelined module with line-rate throughput—that makes it possible to
process high- and low-level streaming operations efficiently. Using
microcode profiling and simulation, we give performance results for a
stateful-inspection firewall application with network address translation
(NAT) support. © 2003 Lucent Technologies Inc.

Introduction
Rapid advances in optical networking technology

have increased the capacity of physical interconnec-

tion links to such a point that bandwidth can be con-

sidered an available resource. As a result, the network

bottleneck has shifted from transport to the network

nodes, especially those (at the edge of the core and

access networks) that must keep pace with increas-

ing line rates. Traditional, software-based network

processing is no longer adequate, because the average

time it takes to serve a single packet can be orders

of magnitude larger than the average time between

the reception of sequential packets, so line-rate

processing cannot be sustained [4, 14]. Gradually,

next-generation telecommunications systems are

rendering legacy software-based and generic

microprocessor-based systems insufficient for network

processing [1, 16]. 

One of the main responsibilities of these network

processing units is to provide firewall functionality,

by granting access to users in a protected fashion, and

by separating a company’s public server (e.g., its

Web server) from its internal private network [25].

Until recently, this type of firewall system was

mainly software-based, and ran on general-purpose
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Panel 1. Abbreviations, Acronyms, and Terms

AAL—ATM adaptation layer
ATM—asynchronous transfer mode
BGA—ball grid array
CAM—content-addressable memory
CMOS—complementary metal-oxide

semiconductor
CPU—central processing unit
CRC—cyclic redundancy check
DMM—data memory manager
DRAM—dynamic RAM
DSP—digital signal processor
EDN—Electronic Design News
EEMBC—EDN Embedded Microprocessor

Benchmark Consortium
FEX—field extractor
FIFO—first in first out
FMO—field modifier
FSM—finite state machine
ICMP—Internet control message protocol
IP—Internet protocol
MPLS—multiprotocol label switching
NAT—network address translation
NP—network processor
PDU—protocol data unit
PPE—protocol-processing engine
PRO3—programmable protocol processor
QoS—quality of service
RAM—random access memory
RISC—reduced instruction set computing
RPG—RPM glue logic
RPM—RISC-based pipelined module
RSVP—resource reservation protocol
SAR—segmentation and reassembly
SRAM—synchronous RAM
TCP—transport control protocol
TOS—type of service
TRS—traffic scheduler
TSC—task scheduler
TTL—time to live
UDP—user datagram protocol
VLSI—very large scale integration
VCI—virtual channel identifier
VPI—virtual path identifier
VPN—virtual private network

processors; the actual firewall was built in software

for a particular processor [11, 15]. However, as the

number of concurrently active connections increases,

the number of protocol instances and the workload

on the system processor also increases. Currently, the

traffic load is such that a software-based firewall sys-

tem is no longer adequate for high-speed networks,

because it cannot handle the traffic efficiently. 

A further problem is that, in order to reach control

decisions (e.g., whether to accept, reject, authenticate,

encrypt, or log communication attempts) for trans-

port control protocol (TCP)- and Internet protocol

(IP)-based services, a firewall must retrieve, store, and

manipulate protocol data from all the network layers

of the open systems interconnection model. For this

to be possible, services such as packet and flow classi-

fication, connection-state handling (i.e., stateful

inspection), higher-layer protocol data unit (PDU)

reassembly, and packet encryption and decryption

must be included in a security system [13] and—more

important—must be executed in less time than the

average time between the reception of sequential

packets [3].

A solution to these network-processing problems

is not immediately evident. Line rates will continue to

increase, imposing ever-new processing requirements

[2, 14]. Furthermore, particularly in the area of ad-

vanced firewalls and security systems [6, 7], the de-

mand for more sophisticated and complex functions

(e.g., high-speed stateful packet inspection [22]) is in-

creasing. Application-specific integrated circuit-based

systems require extended periods of development—12

to 18 months from design to marketplace—and,

although very efficient, do not provide the necessary

flexibility. A system based on a highly programmable

reduced instruction set computing (RISC) core can

provide flexibility, but it sacrifices speed to program-

mability. One way to achieve both packet-handling

speed and programming flexibility is to adopt a hybrid

solution in which RISC cores are integrated with ded-

icated hardware [24]. So-called network processors

(NPs) [9, 19], which do this, offer increased through-

put and low latency in a broad range of applications

by allowing networking tasks normally handled by

software to be executed by hardware. A network

processor can be defined as a highly integrated com-

munications circuit that is optimized to provide pro-

grammable processing of PDUs at high—preferably,

at wire—speed.
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In this paper, we describe the programmable

protocol processor (PRO3) system architecture

[20], which is a hybrid approach to the challenging

protocol-processing problem. It has been designed to

support and accelerate the performance of a stateful-

inspection firewall with network address translation

(NAT) support [8] by using tight coupling of software

and hardware to produce more efficient execution of

telecommunications protocols. The PRO3 architecture

is based on a high-performance RISC core, which is

extended with programmable, pipelined hardware.

Real-time protocol functions and functions that

place heavy demands on the central processing unit

(CPU) are handled by the programmable hardware;

the remaining functions—as well as higher-layer

protocols—are handled by a pair of on-chip RISC-

processor-based modules optimized for fast context-

switching and pipelined processing [17]. With this

architecture, it is expected that significant perform-

ance improvements will be achieved in:

• The rate of connection insertion and deletion,

which measures the number of connections per

second supported by the system when applications

set up and tear down connections continuously;

• The throughput, which measures the aggregate

number of bytes per packet that the system can

process and forward to its output interface;

• The latency, which measures the aggregate delay

encountered by network traffic, and which is

introduced by the processing delay of the system;

and

• The number of processed sessions, which meas-

ures the maximum number of simultaneous con-

nections supported by the system.

The rest of this paper is organized as follows. The

next section analyzes the basic functions required in

a high-speed firewall system and discusses their im-

plementation by the PRO3 architecture. The following

section describes the PRO3 architecture; the subse-

quent section analyzes the implementation of and

provides a performance evaluation of a stateful-

inspection firewall on the PRO3 system. It also gives

performance simulation results and measures the

cycle budget for each critical processing module. A

final section draws conclusions regarding the overall

performance of the PRO3 system, assuming worst-

case throughput by its submodules.

Functions and Requirements of an NP-Based
Firewall System

Based on the protocol analysis presented in [23],

Figure 1 summarizes the required functionality found

in various telecommunications systems that involve

protocol processing. The following subsections ana-

lyze each function displayed in Figure 1 and discuss

how the PRO3 system implements it.

Field Extraction
The packet header contains all the information

necessary for processing asynchronous transfer mode

(ATM) cells or IP packets. Because the entire packet

travels as an aggregation of bits, a mechanism is

needed to separate header fields from the rest of the

message as well as from each other. Such a process

has to be adaptable to the protocol in question and

take into account the length (variable or not) of the

fields to be extracted. Because header fields may vary
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Figure 1. 
Protocols and required functionality.
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in length, their boundaries are not fixed. Therefore,

the field extraction mechanism takes the form of a

variable-width window that slides over the message

header, and it has to deal with the problems of posi-

tioning and size adjustment.

PRO3 provides programmable field extraction

units that support the processing of variable-length

IP packets, TCP and user datagram protocol (UDP)

packets, fixed-size ATM cells, and variable-length

ATM adaptation layer (AAL) PDUs.

Segmentation and Reassembly
In network protocols, it is quite common for pack-

ets to be fragmented before they are issued to the net-

work, because there are restrictions regarding the

maximum number of bytes that can be transferred over

a specific data-link interface. When fragmentation

occurs, each one of the fragments (or segments) created

from the byte stream is marked to identify its position

within the stream. Then, when the fragments reach

their destination, a reverse procedure—reassembly—is

followed. During the reassembly procedure, fragments

may be received out of order; if this occurs, special care

must be taken to reorder them.

PRO3 provides reassembly queues in the buffer

memory (which is used to store packets temporarily

after they are received) for the reassembly of either IP

packets or AAL-layer PDUs.

Checksum and CRC Calculation
Checksum and cyclic redundancy check (CRC)

calculations are performed to verify that the infor-

mation carried in the header and user data have

been transmitted correctly. If an error is detected, the

packet containing the error is discarded. In the IP

world, the checksum is calculated as the 16-bit one’s

complement of the one’s complement sum of all

16-bit words in the protected area. For purposes of

computing the checksum, the value of the check-

sum field is zero. For the IP protocol, the checksum

protects only the IP header, but, for the TCP and

the UDP, both the header and the user data are

protected.

PRO3 provides dedicated hardware blocks to

accelerate the data verification algorithm in the

most common cases, which include IP checksum and

10- and 32-bit CRC calculations.

Header Modification
Header modification updates the values of spe-

cific fields of a protocol header after the classification

procedure has been performed. Fields that may be

updated include:

• The TTL field of the IP header,

• The TOS byte of the IP header,

• The header checksum and CRC,

• The IP address and port in NAT,

• The next-hop virtual path identifier (VPI) and

virtual channel identifier (VCI) values of an ATM

cell, and

• The next-hop medium access controller address

(which may be inserted when the packet is being

sent to an Ethernet output port).

PRO3 supports both header modification and PDU

encapsulation functions.

Classification and Filtering
Classification maps an incoming cell or packet to a

homogeneous class of cells or packets. All the cells and

packets of a specific class share some common attrib-

utes, among them quality of service (QoS) parameters,

routing path, and session and connection parameters.

Classification requires a look-up in a table that associ-

ates several combinations of values appearing in fields

of protocol-specific information with a classification

decision. The classification of packets based on higher-

layer protocol information in intermediate nodes also

requires the reassembly of packets in each node.

PRO3 uses a ternary content-addressable mem-

ory (CAM) to provide flow classification capabilities.

After classification, traffic is filtered; only data that

comply with the network policy pass through the

network processor. For IP-based applications, connec-

tion endpoints are identified by a 5-tuple: the IP source

address, the IP destination address, the source port,

the destination port, and the protocol type (i.e., TCP or

UDP). For ATM applications, connection identification

is based upon the input port, the VPI and VCI fields,

and (for signaling applications) higher-layer connec-

tion identifiers. PRO3 supports both external configu-

ration and connection-parameter initialization.

Queue Management
The main use of queues in network protocols is to

buffer incoming cells and packets temporarily, until
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they are fully processed and ready to be forwarded.

Queues can also be used to store maintenance and

state information for handling incoming cells and

packets. A queue manager must, at the very least,

support an insert and extract interface. PRO3 provides

adequate buffer space for storing and reassembling

packets for further processing.

Timer Management
Timeout timers and watchdog timers are an

important part of network protocols. Because each

protocol instance needs at least a few timers (i.e., one

for each different time scale), a system supporting

thousands of protocol instances must devote a con-

siderable part of its processing time simply to keeping

track of the time for all the timers. 

PRO3 incorporates dedicated hardware that can

handle a timer pool large enough to support the re-

quirements related to timer-event generation of the

application described in the section “Implementation

and Performance Evaluation of a PRO3-Based Stateful-

Inspection Firewall.”

State Handling 
State handling refers to the maintenance (i.e., the

creation, update, and deletion) of protocol state infor-

mation. State information must be organized in such

a way that it will allow (O(1)) searches fast enough to

achieve the required throughput. The execution of

the protocol finite state machine (FSM) is supported

by microcode execution on the PRO3 RISC CPU and

by an efficient context-switching mechanism.

Traffic Scheduling
Traffic scheduling involves the forwarding of dif-

ferent packet streams, using a set of queues and, pos-

sibly, other mechanisms like timers. PRO3 supports

only generic scheduling based on priority queues for

sharing PRO3 processing resources and resolving con-

tention among packets to be transferred to the output

interface.

Encryption and Decryption
Encryption usually occurs either before data are

issued to the network or before data leave the local

intranet for the Internet; decryption occurs either

when data either arrive at their destination or when

data enter the corporate intranet. Encryption and

decryption are useful when dealing with virtual

private networks (VPNs). 

The integrated RISC and digital signal processor

(DSP) of PRO3 supports the processing of encrypted

packets for a number of flows. However, the through-

put for encrypted flows will be lower than the link rate.

The PRO3 Architecture
The PRO3 system architecture follows a unique

approach to high-speed protocol processing. The pro-

tocol processor attempts to accelerate the execution of

telecommunications protocols by extending a high-

performance RISC core with programmable, pipelined

hardware. The PRO3 system offers three end-to-end

processing paths:

• Hardwire packet reception, storage, and for-

warding;

• Wire-speed packet processing, involving special-

ized RISC cores; and 

• Best-effort processing, involving typical RISCs. 

Real-time protocol functions and functions that place

heavy demands on the CPU are handled by the pro-

grammable hardware; the remaining functions—as

well as higher-layer protocols—are handled by the

on-chip RISC in an integrated way or by the external

processor.

The innovative concept of the PRO3 architecture

is to provide the processing power required for high-

speed protocol processing by incorporating parallelism

and pipelining and—wherever possible—integrating

generic microprogrammed engines with hardware

components dedicated to performing specific protocol-

processing tasks that rarely change over time, such as

framing, CRC and checksum calculation, hashing,

timer management, flow management, and memory

management. Such hardware has only a few config-

uration options, and does not require the support of

programmable software.

The PRO3 architecture employs specialized

cores to handle high-speed links and support de-

manding applications. This is necessary, because some

protocol-processing tasks are heavy users of computer

resources, either because of their computational com-

plexity or because of their demands on memory

throughput. After analyzing the functions required
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for firewall functionality and determining how often

they are called [23], it is possible to accelerate the

critical ones significantly by using either fixed (for

well-defined functions that are standardized) or

programmable hardware. This approach allows a

single component with different configurations to

execute many different protocol FSMs that require

both high execution and the ability to handle mes-

sages with low propagation and processing delay.

Logical Decomposition
The functional architecture of the protocol proces-

sor is depicted in Figure 2. The main concept behind

the architecture is the idea of dividing protocol pro-

cessing functions into tasks that can be executed in a

distributed manner on different functional entities.

The PRO3 functional model consists of a CPU with an

embedded RISC core, a reconfigurable module, and a

set of on-chip peripherals that are common to proto-

cols and streaming tasks. The on-chip peripherals of

the protocol processor contain the following modules:

message recognition, generic encoder, genetic decoder,

timer pool, and memory management.

The functional flow is similar to that followed

when a protocol is executed in a typical software

implementation. After a message or packet has been

recognized and classified, it is assigned a flow ID that

is unique within the respective protocol or task. Then,

a field decoder extracts the necessary fields and

control information and forwards structured infor-

mation to the processing unit. Finally, a field or packet

encoder composes the outgoing byte stream or packet.

Generally, protocol processing is initiated by the

arrival at the network interface of a packet with spe-

cific protocol information in an appended header or

trailer. The proper evaluation of the fields that contain

the protocol information leads to the appropriate clas-

sification of the message. The reconfigurable module

handles the execution either of entire protocols or of

the most frequently used and most time-consuming

branches of protocol FSMs in error-free conditions,

depending upon the requirements of the application,

the type of the message, and the protocol executed.

The reconfigurable module is accessible to the main

RISC CPU, in which configuration code is executed

and protocol state information exchanged. In most

cases, the result of protocol processing is an update

of the stored protocol state and the generation—by

the generic encoder and decoder—of a new or modi-

fied message or packet to be forwarded to either a

higher-layer protocol or an output network interface.

The symbolic feedback bus in Figure 2 indicates the

return of messages to the input of the component,

which occurs when a multiprotocol stack (e.g., IP and

Memory
management

Timer
pool

Message
recognition

Generic
decoder

Embedded
RISC

Reconfigurable
Module

External
memory

Host
I/F

IN
I/F

OUT
I/F

Generic
encoder

I/F—Interface
PRO3—Programmable protocol processor
RISC—Reduced instruction set computing

Figure 2. 
PRO3 functional architecture.
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ATM, or multiprotocol label switching [MPLS]) is im-

plemented. Certain priority rules can be applied, along

with specific access to or from the system. Timers

and efficient memory management (including table

look-up and data and protocol context buffering) are

integral parts of protocol processing and potential

bottlenecks in generic architectures, but in the PRO3

architecture they can be assigned to dedicated hard-

ware units, as shown in Figure 2.

Physical Decomposition
The physical architecture of the PRO3 is depicted

in Figure 3. In this figure, a dotted line separates

internal from external blocks. The PRO3 has been

designed as a system-on-chip, integrating hardware

blocks for preprocessing and post-processing. It con-

sists of two RISC-based pipelined modules (RPMs)

(each consisting of two RISC-like cores for field

processing and an optimized typical RISC [10]

for structured processing), a header processor for pro-

grammable classification, and a typical RISC core

for control and glue logic. Packet preprocessing and

lower-layer protocol functions are executed by means

of hardwired functionality (like the full ATM/common

part convergence sublayer layers), and programmable

PDU processing and packet classification by means of

a RISC-like microengine for field extraction and a

CAM
for

classification

External host
CPU

(optional)

Control RAM
(state)

CPU
RAM

CAM I/F

Timers

Scheduling RAM I/F

CPU I/F

INSERT/
EXTRACT

Control RAM I/FSDRAM
I/F

RISC CPU

FEX PPE FMO

RPM

FEX PPE FMO

RPM

Pre-processing

Packet
classifier

CRC

ATM/CPCS
RX layers

Post-processing
ATM/CPCS
TX layers

CRC

Task scheduling
block

Data memory managerIN OUT

Internal BUS

Pointer
RAM

Storage
DRAM

Scheduling
memory

Traffic
scheduler

ATM—Asynchronous transfer mode
CAM—Content-addressable memory
CPCS—Common part convergence sublayer
CPU—Central processing unit
CRC—Cyclic redundancy check
DRAM—Dynamic RAM
FEX—Field extractor
FMO—Field modifier

I/F—Interface
PPE—Protocol-processing engine
RAM—Random access memory
RISC—Reduced instruction set computing
RPM—RISC-based pipelined module
RX—Receive
SDRAM—Synchronized RAM
TX—Transmit

Figure 3. 
Block architecture of PRO3 system.
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controller of a high-throughput external ternary CAM

device. The ternary CAM is used for flexible and

deterministic classification. For IP packet processing,

the packet classifier submodule constructs a search

key of up to 144 bits that triggers the CAM search.

This allows the PRO3 to be applied to other network-

ing protocols, including MPLS, IPv6, and gigabit

Ethernet. Memory latency bottlenecks caused by

worst-case conditions have been avoided by allowing

parallel memory accesses per functional unit. 

Basic components in the PRO3 architecture are

the RPM; the data memory manager (DMM), which

stores the incoming traffic and, when requested, re-

trieves some or all of the stored packets; and a com-

posite scheduler unit, which determines the internal

data transaction and shapes the traffic based on prior-

ity specifications, and a packet classifier, which is used

for packet classification and filtering. Altogether, the

PRO3 chip embeds five RISC-like cores optimized for

field processing, three typical RISC cores for packet

processing, and 11 generic and application-specific

hardware blocks. These are all implemented in UMC

0.18-micron complementary metal-oxide semicon-

ductor (CMOS) technology occupying about 52 square

millimeters, and are prototyped as a 1096 BGA pack-

age at 200 MHz. The following sections analyze the

basic components of the PRO3 system.

The data memory manager. The main function of

the DMM is to store incoming packets in and retrieve

packets from the data memory. Packets are stored per

flow in an external dynamic random access memory

(DRAM) in queues implemented as linked-list data

structures [18]. Each flow is served by the DMM

through its dedicated queue (there is one queue per

active connection in which data and packets are

stored and reassembled), which is directly indexed by

a flow ID value assigned by the packet classifier of the

preprocessing block. This value uniquely identifies the

protocol data and context for each connection and

each layer of the protocol stack. The DMM shapes the

incoming packets into fixed-size segments of 64 bytes.

This segmentation of memory space optimizes the use

of memory, improving the performance of the DMM

and reducing the delay experienced by high-priority

packets. In response to commands, the DMM retrieves

from each incoming TCP/IP packet only the first 64 or

128 bytes (depending on the packet length), which

contain all the header information. These segments

are sent over the internal bus to the RPM modules, or

to the control RISC CPU, or to a host CPU (via the

insert and extract interface), or directly to the output

interface. The remaining packets are stored in the data

memory until the header information is fully

processed, at which point they are ready to be trans-

mitted or discarded. 

This efficient way of storing and retrieving pack-

ets minimizes demands on memory throughput, giv-

ing the architecture a clear advantage over other

network processor designs. The total bandwidth of

the DMM is 10 Gb/s; it is dynamically distributed to

four ports, which are used for receiving traffic from

and transmitting traffic to the internal PRO3 bus and

the network, respectively. The DMM can perform per

flow queuing for up to 512K flows, and it operates at

both the cell and the packet level, making it suitable

for both cell- and packet-based applications. The

DMM uses an external double data-rate DRAM for

packet storage and a synchronous random access

memory (SRAM) for segment and packet pointer

storage. 

The RISC-based pipelined module. The RPM con-

sists of three logical units: the field extractor (FEX)

programmable engine, the protocol-processing engine

(PPE) (which is a composite module), and the field

modifier (FMO) programmable engine. The PPE itself

consists of three modules: a modified Hyperstone

RISC [10], the RPM glue logic (RPG), and the

read/write control RAM module. Figure 4 displays

the RPM top-level design architecture.

Together, the three modules of the PPE form a

powerful three-stage pipelined module that contains

the hardware and software required to form the pro-

cessing heart of the system. This design, in which ded-

icated functional units are interconnected with a RISC

core, is very well suited to tasks involving a high de-

gree of functional diversity. The design also increases

the use and the efficiency of the optimized RISC

processor core by providing the means to configure

its circuits for special tasks and, conversely, the

RISC processor core—with its highly optimized
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configuration—accelerates protocol processing (and

any other computing task), providing better perform-

ance at a lower cost than other network processors.

The RPG block receives extracted fields from the FEX,

and directly accesses the register file of the modified

RISC core. This register file is divided into two parts:

while the modified RISC core processes the data of

one part, the RPG writes new fields to or reads new

fields from the other part. A feedback signal from

the RISC core to the entire RPM can extend the

processing cycle of any given packet. This signal

stalls the operation of the RPM, making it able to

accommodate requirements that call for extended

packet processing. 

An important component of the RPM architec-

ture is the packet delay first in first out (FIFO). After

the FEX has extracted fields, the data received—a

packet or a part of a packet—is temporarily stored in

the packet delay FIFO to await the results of the

processing of the fields or packet. Then, when the

FMO receives the results of the processing and the de-

layed data from the RISC, it may, depending upon the

processing results and the application, modify the de-

layed packet and send it back to the DMM. The DMM
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Execution of

micro-programs
Code
RAM

Field Modifier

To CRI port

To DRAM (SW)

uP bus

uP bus

MSG Fields

FSM State
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NEW State
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Figure 4. 
RISC-based pipelined module.



140 Bell Labs Technical Journal

then replaces the segments of the packet that have

been sent to the PPE by these modified data, and sends

the new packet out. In other words, only specific fields

are extracted by the FEX and fed to the PPE module,

and only these specific fields are replaced by their

new values in the FMO. This results in a constant

clock-cycle-to-packet-length ratio and in an optimal

total processing time, as measured against packet re-

ception time.

The FEX and FMO engines of the RPM module

are pipelined and fully programmable engines that

operate on protocol-based firmware. Their operation

is controlled by microcode stored in an internal SRAM

with up to 2K instructions. The instruction set com-

prises simple and generic (i.e., protocol-independent)

instructions that can be used in any protocol or pro-

tocol encapsulation scheme. Table I lists the fields

that are extracted for processing from the IP, TCP,

UDP, and Internet control message protocol (ICMP)

headers during protocol processing in a stateful-

inspection firewall application with NAT support.

The packet classifier. Classification is an important

and complex operation in protocol processing envi-

ronments. The packet classifier is incorporated in the

preprocessing block; it is realized using dedicated pro-

grammable logic in conjunction with a ternary CAM

for fast pattern matching. The packet classifier module

receives packet data from the network interface (i.e.,

packet over synchronous optical network) and per-

forms protocol header verification, field extraction,

flow classification, and exception handling (e.g., in-

serting and deleting flows). The packet classifier

module consists of three submodules: a FEX engine, a

classifier FSM, and a verifier. The purpose of the

field extraction mechanism is to extract—actually to

isolate—specific fields in a packet, and to forward

them to the classifier FSM for processing. These fields

can be part of the packet header or trailer (or packet

headers and trailers, in the case of packet encap-

sulation). The FEX engine is similar to the one in-

corporated in the RPM module. The classifier FSM

constructs a 144-bit search key that triggers a CAM

search. In response, the CAM returns a 19-bit flow

ID value.

The scheduler unit. Scheduling is necessary to

resolve contention for processing resources in a fair

manner and to distribute over time the transmission

of packets and cells (in a network medium) according

to traffic management rules (i.e., traffic shaping). The

meaning of fairness varies depending upon the met-

ric under consideration, but it may imply low latency

or a guaranteed share of the resources. When the

processor cannot sustain worst-case conditions with

line rates of 2.5 Gb/s or 10 Gb/s (i.e., the standard

line rates for TCP stateful inspection), queuing is nec-

essary, and a queuing service discipline that guaran-

tees QoS must be implemented. Therefore, the

scheduler unit must maintain a number of priority

queues, in order to schedule the forwarding of pack-

ets for processing according to a configurable priority

per flow or per QoS class. In PRO3, the scheduling

mechanism has been divided into two parts: one for

task scheduling and one for traffic scheduling. The

Fields Extracted (RPM module)

Number of
Header Field Description bits

IP
ip_hlen IP header length 4

ip_len IP packet length 16

th_sqn TCP sequence 32
number

th_ack TCP ack/ment 32
number

TCP
th_off TCP offset 4

th_flags TCP flags 6

th_win TCP window 16
size

th_cksum TCP checksum 16

UDP No field is extracted, because it is stateless.

ICMP No field is extracted, because it is stateless.

Table I. Fields extracted for protocol processing in a
RISC-based pipelined module.

ICMP—Internet control message protocol
IP—Internet protocol
RISC—Reduced instruction set computing
RPM—RISC-based pipelined module
TCP—Transport control protocol
UDP—User datagram protocol
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task scheduler (TSC) block (see Figure 3) controls the

data flow in the high-speed internal PRO3 bus, which

is used for data transactions and communication

among the internal modules. The traffic scheduler

(TRS) block (see Figure 3) manages the profile of the

generated traffic in accordance with traffic manage-

ment specifications and service-level agreements. The

TRS block is of paramount importance in implement-

ing and guaranteeing an agreed-upon QoS. 

Together, the TSC and the TRS manage 32 sched-

uling queues that can be used for sharing PRO3 pro-

cessing resources in a weighted round robin manner

[12]. Each of these queues is associated with one of the

possible internal destinations for packets in PRO3 and

with a specific handler protocol that will be executed

for the data of this flow. Naturally, more than one data

queue will share the same scheduling queue. The mul-

tiplexing of multiple flows in one scheduling queue

(i.e., flow group) is based on a round robin discipline.

Thus, all the flows that hash into the same scheduling

queue will share equally the portion of internal pro-

cessing resources (in terms of service opportunities)

that is allocated to that queue in accordance with the

preconfigured weight of the queue.

Implementation and Performance Evaluation
of a PRO3-Based Stateful-Inspection Firewall

The proposed firewall implementation on the

PRO3 system is a departure from the usual imple-

mentation of firewalls that attempts to increase both

the effective bandwidth and the number of concur-

rently monitored connections. In order to provide

robust security, a firewall must continuously moni-

tor the line data, and must track and control the flow

of all communication passing through the firewall. In

this implementation, the PRO3-based firewall is posi-

tioned at the network boundaries on an edge router

line card. To reach control decisions for TCP/IP-based

services (i.e., to decide whether to accept or reject

a packet), the PRO3 system stores, retrieves, and

processes protocol data derived from different com-

munication and protocol layers. Moreover, since it is

not sufficient to examine packets in isolation, state

information is maintained and is used for making

control decisions. State information—derived either

from the recent past of a communication session or

from other applications run in the past—is an essen-

tial factor in making control decisions for new

communication attempts. Depending upon the com-

munication attempt, both the communication state

(derived from past communications) and the applica-

tion state (derived from other applications) may sig-

nificantly affect the control decision. By maintaining

state information, the PRO3-based stateful-inspection

firewall can meet all the security requirements of a

firewall; traditional firewall technologies (e.g., packet

filters and application-layer gateways) cannot. Stateful

inspection takes place mainly at the boundary be-

tween the intranet and the Internet. The PRO3 system

accelerates the performance of the firewall by imple-

menting key functionality in hardware, as well as by

optimizing the balance between hardware and soft-

ware functions. 

The mapping of the firewall application to the

PRO3 architecture is displayed in Figure 5. The

PRO3-based stateful inspection firewall has the fol-

lowing features:

• It can accept and forward packets belonging

to certain flows (i.e., TCP, UDP, and ICMP) with-

out stateful-inspection processing of protocol

headers.

• It can accept and forward packets belonging to

certain flows (i.e., TCP and ICMP) that respect

the rules of stateful-inspection processing.

• It can reject packets belonging to certain flows

(i.e., TCP, UDP, and ICMP).

• It can reject packets belonging to certain flows

(i.e., TCP, UDP, and ICMP) that violate the rules of

stateful-inspection processing.

• It can provide NAT service to packets that belong

to certain flows (i.e., TCP and UDP).

The stateful-inspection firewall for TCP packets

consists of three main stages. (The internal data path

of each stage is displayed in Figure 6.) They are:

• Packet reception. The input module (the IN block in

Figure 6) receives flows of IP packets and for-

wards them to the packet classifier in the prepro-

cessing block and to the DMM. The packet

classifier makes a preliminary check, performs

field extraction and classification, and sends
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control information to the DMM. The DMM seg-

ments the IP packet, stores it in a temporary

queue, and calculates and stores the packet

length. As soon as the DMM receives all the rel-

evant information from the packet classifier, it ap-

pends the packet to the appropriate queue and

sends control information to the schedulers.

• Packet processing. In this stage, certain fields are

extracted from the protocol headers and brought

into the RPM along with the relevant state in-

formation, which is stored in the control RAM.

The control RAM is a zero-bus-turnaround

SRAM, which is accessed by multiple blocks re-

questing flow-state information at various times.

All this information is processed based on the

stateful-inspection processing rules, and a deci-

sion is made to accept or to reject the current

packet. In necessary, the NAT service is also

activated.

• Packet transmission. The transmission operation is

based on a forward-upon-availability principle.

The traffic forwarded to the network keeps the

traffic profile of the incoming streams. This is

accomplished by having the task scheduler

preserve the order of the packets it processes,

and by having it support different priorities for

internal processing.

Performance Evaluation
It is worth noting that there is no simple way of

doing a performance evaluation for a protocol proces-

sor. Because protocol processors constitute a new

paradigm in network-oriented computing architec-

tures, few benchmark results exist. Furthermore, no

standard benchmarking procedures exist, because of

the variety of protocol processor architectures and

the wide range of applications. Our approach to

evaluation combines legacy benchmarking metrics

for estimating the performance of programmable

microengines (e.g., instructions per second and in-

structions per cycle) with the techniques of the NP

Benchmarking Working Group of the Electronic

Design News (EDN) Embedded Microprocessor

Benchmark Consortium (EEMBC), based on its first

published draft [5]. A new metric introduced by the

EEMBC is headroom, which measures the ability of a

network processing platform to perform multiple net-

working functions in parallel, in any combinations

that make sense for networking applications, and still

maintain wire-speed performance. In the PRO3

Packet classification, IP header
verification & delineation

Flow ID look-up

DRAM—Dynamic random access memory
IP—Internet protocol

RISC—Reduced instruction set computing
TCP—Transport control protocol

Drop, Forward or
Process Packet

Packet transmission

Data memory manager
(Packet storage in DRAM)

Payload

Header

Header

Header

RISC-based pipelined
module

TCP state look-up

Payload Header

Header

Payload Header Packet
reception

Figure 5. 
Mapping of the firewall application on the PRO3 architecture.
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CPCS—Common part convergence sublayer
CPU—Central processing unit
CRC—Cyclic redundancy check
DRAM—Dynamic RAM
FEX—Field extractor
FMO—Field modifier
I/F—Interface

NAT—Network address translation
PPE—Protocol-processing engine
RAM—Random access memory
RISC—Reduced instruction set computing
RPM—RISC-based pipelined module
RX—Receive
SDRAM—Synchronized RAM
TX—Transmit

Packet processing
Packet reception
Packet transmission

IN Data memory manager

CPU I /F

Internal BUS

Figure 6. 
Typical data flow in a stateful-inspection firewall system with NAT support.

architecture, which includes fixed hardware units and

programmable engines designed to operate either as a

pipeline or in parallel, we will define headroom as

the percentage of the available processing resources of

the chip that can be exploited in parallel. The main

processing units that can operate in parallel are the

two RPM units and the central RISC unit. Because

the RPM (which receives the packet or packet header

and executes the protocol message at wire speed) is

the processing heart of the PRO3 architecture, its

throughput—and that of its sub-block—determines

application performance. The throughput of the RPM

is determined by the worst-case performance of each

of its pipeline stages, as we shall see in the following

discussion.

We have evaluated several applications and have

written the PRO3 specifications to meet the perform-

ance targets that are included in Table II. In applica-

tions 5 and 6 in Table II, maximum performance (i.e.,

2.5 Gb/s sustained throughput) can be achieved

for average-case conditions, based on typical IP packet

distributions [21]. Worst-case conditions (i.e., a
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Headroom
Sustained Max (RISC, RPM1,

Application rate flows RPM2)

ATM applications

1 ATM cell 2.5 Gb/s 512K 100%, 100%,
processing 100%

2 AAL5 2.5 Gb/s 512K 100%, 100%,
processing 100%

IP applications

3 Layer 2, 3, 4 2.5 Gb/s 512K 100%, 100%,
classification 100%

4 Layer 2, 3, 4 �2.5 Gb/s 512K 100%, 100%,
filtering 100%

5 Layer 4 �2.5 Gb/s 512K 100%, 0%, 0%
stateful

inspection

6 NAT 2.5 Gb/s 512K 100%, 0%, 0%

Table II. PRO3 features.

AAL5—ATM adaptation layer type 5
ATM—Asynchronous transfer mode
IP—Internet protocol
NAT—Network address translation
PRO3—Programmable protocol processor
RISC—Reduced instruction set computing
RPM—RISC-based pipelined module

continuous stream of minimum size 40-byte IP

packets) have a negative impact on performance, as

the analysis that follows in this section shows.

However, this performance deterioration is to be

expected, especially when a network processor must

handle additional functions and even more complex

applications. 

The performance evaluation of the stateful-

inspection firewall with NAT support has been based

on a PRO3 chip, implemented using UMC 0.18-micron

CMOS technology, with a clock speed of 200 MHz and

a 64-bit internal bus. Simulations were carried out on

the final Verilog-flattened netlist, after the chip-layout

procedure. Firmware was developed for all the micro-

engines, and open-source C code was ported. Samples

of real TCP/IP traffic were used as input, and the pro-

cessing time of each of the programmable protocol

engines of the RPM block was measured. In addition, in

order to evaluate application performance, simulations

were carried out with different packet and header

lengths. Two parameters were measured: the total

number of instructions executed and the correspon-

ding processing time. Based on these figures, the

throughput of each sub-block and of the whole mod-

ule was estimated. Finally, the performance of each of

the cores of the RPM module was investigated.

Simulation Results
The DMM sends the RPM either one 64-byte

segment (if the IP packet length is no more than

64 bytes) or two (if the IP packet is larger than

64 bytes). In this manner, it is guaranteed that all the

relevant fields from the IP and TCP headers will be

sent for processing to the FEX programmable engine

of the RPM module. Figure 7 displays the total num-

ber of instructions executed by the FEX for varying IP

header lengths and small (i.e., less than 64-byte) and

large (i.e., greater than 64-byte) packets. For this par-

ticular implementation of the stateful-inspection fire-

wall application, the FEX is supposed to process only

the TCP and IP header of each packet, by extracting

the fields listed in Table I. 

It is worth noting that, as shown in Figure 7, the

number of instructions required is independent of the

IP packet length. For small IP packets (i.e., those be-

tween 40 and 64 bytes), the number of instructions

required is proportional to the IP header length

(which is determined by the number of valid IP op-

tions). Also, for IP packets larger than 64 bytes, a fixed

number of instructions is required when the IP header

length is between 20 and 48 bytes, while for longer

IP headers, the number of instructions increases

proportionate to the IP header length, reaching a max-

imum of 43 instructions for an IP packet with 60 bytes

of IP options. The average cycle-to-instruction ratio

for the FEX microengine is 1.6. Although this value is

not ideal, it can be improved by reducing the most

clock-consuming instructions. However, since the pro-

cessing does not depend on the total IP packet length,

no great improvement in the value is possible.

Figure 7 also shows that the total number of in-

structions for two segments (i.e., IP packet length

larger than 64 bytes) is smaller than the total number

of instructions for one segment (i.e., IP packet length

between 40 and 64 bytes). The reason for this is that

the firmware easily identifies the case of two segments
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and, based on the IP header lengths (which appear in

the first segment), scans faster and jumps directly to

the fields to be extracted (which appear in the second

segment). The relationship between the processing

time of the FEX microengine and the IP header length

is displayed in Figure 8. It can be seen that the

throughput of the FEX microengine for 40-byte pack-

ets is close to 3.9 Mpackets per second (Mp/s). This

throughput can be doubled when traffic is shared

by the two RPM modules, allowing it to exceed the

maximum 7.5 Mp/s throughput for 40-byte TCP/IP

packets at the OC-48 line rate.
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The FMO also receives the same number of seg-

ments as the FEX—one or two 64-byte segments—

depending on the total packet size. However, in the

FMO, the total processing time depends on the IP

header length and the number of valid bytes in the

segments (one or two stored in the bypass FIFO). To

this end, optimization was possible, yielding signifi-

cant improve in FMO sub-block performance. For

example, the average cycle-to-instruction ratio was

2.2; after optimization it decreased to 1.7. This result

was achieved by determining which firmware rou-

tines were called most often, which were the most

clock-consuming routines, and which routines could

be executed in parallel. After optimization, there was

a significant decrease in the number of instructions

executed, resulting in shorter processing times and in

an improved cycle-to-instruction ratio. 

Figure 9 displays the total number of instructions

executed in the optimized FMO for varying total IP

packet and IP header lengths. From Figure 9 it is ap-

parent that, for packets having the same IP header

length (i.e., the same number of valid IP options), the

total number of FMO instructions required for NAT is,

as expected, proportional to the IP packet length.

Also, for IP packets that have the same length, the

number of instructions is in inverse proportion to the

IP header length (i.e., the number of valid IP options).

The reason for this is that, the more IP options there

are, the fewer jump instructions the microengine

needs to scan the contents of the packet. 

Finally, Figure 10 shows how the total processing

time varies with IP packet length. From this figure, it

can be seen that a single FMO module can sustain

about 4 Mp/s of traffic, assuming packets of 40 bytes.

However, when the workload is balanced between

the two RPM modules, the processing capability of

both the FMO and the RPM exceeds the 7.5 Mp/s

throughput required for processing continuous

streams of minimum size (i.e., 40-byte) IP packets at

the OC-48 link rate.

The performance of the third complex sub-block

of the RPM module, the PPE, and, in particular, of its

submodule, the modified Hyperstone RISC, depends

heavily on the custom application that is running. It is

estimated that, for each additional complex service in

the firewall (e.g., TCP state updating), the modified

RISC core needs around 170 instructions, which, of

course, negatively affects overall system performance.

However, for complex scenarios, this is a trade-off that

any network processor faces. Our analysis indicates

that, by using two RPM modules and balancing the

load between them—which the design of the internal

scheduler makes possible—it is possible to sustain

4 Mp/s in the worst case (i.e., only TCP traffic). For

the average IP packet, which is about 128 bytes, this

rate exceeds the OC-48 rate of 2.5 Gb/s. It is worth

noting that packet classification, queuing, and sched-

uling can support 2.5Gb/s link rates in worst-case sce-

narios (i.e., with minimum packets). Table III gives

the approximate number of instructions required for
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TCP processing, based on commercially available

Hyperstone RISC processors and an analysis of

the code developed for the implementation of the

stateful-inspection firewall. The results in Table III are

classified into two main sections: the first consists of a

number of calculations and comparisons, and the

second is a large switch statement section. It should be

noted that not all the instructions of the switch section

will be executed each time a TCP packet is processed,

so the instruction count for the longest branch that

might be executed would be lower than it might

appear.

Conclusions
This paper has presented the PRO3 architecture,

with emphasis on the implementation of a stateful-

inspection firewall with NAT support. The PRO3 sys-

tem uses the innovative concept of a three-stage

pipelined module that integrates a RISC core with

reconfigurable hardware on the same processing

platform. In this way, a significant acceleration of

protocol processing can be achieved in demanding ap-

plications like firewalls. Modern, stateful-inspection

firewalls require increased processing power for

handling a large number of concurrent connections

at very high link rates, for monitoring all user-

established flows, and for performing packet process-

ing, filtering, and stateful inspection up to the

application layer. PRO3 attempts to provide such a

system with no degradation in network performance

and, at the same time, to provide security adequate to

prevent any attempts at illegal communication. 

The PRO3 design is suitable for both cell- and

packet-based network-processing applications with

low memory requirements, and it has the flexibility to

support multiple service disciplines in a programma-

ble way, and to support thousands of flows. The PRO3

chip is being fabricated in UMC 0.18-micron CMOS
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No. of assembly
instructions

Calculate and compare section 110

Switch section 60

Total 170

Table III. Number of MHY assembly instructions
for TCP processing.

MHY—Modified Hyperstone RISC
RISC—Reduced instruction set computing
TCP—Transport control protocol
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technology occupying about 52 square millimeters; it

will be packaged in a 1096 BGA package. Samples

were delivered in August, 2002. 
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